Inorganic–polymer composites have become promising materials to be processed by printing technologies because of their unique properties that allow the fabrication of flexible wearable electronics at reduced manufacturing costs. In the present work, a complete methodological process of assembling a flexible microthermoelectric generator based on inorganic−polymer materials is presented. The used microparticles were prepared by a top-down approach beginning with a previously prepared material by solid-state reaction and later scaled down through the use of ball milling. It was found that the necessity to proceed with a chemical treatment with HCl to reduce Bi2O3 present on the surface of the microparticle leads to a power factor (PF) of 2.29 μW K–2 m–1, which is two times higher than that of the untreated sample. On the fabrication of flexible inorganic–organic thermoelectric thick films based on Bi2Te3 microparticles (<50 μm) and the poly(vinyl alcohol) (PVA) polymer with different thicknesses ranging from 11 to 265 μm and with different Bi2Te3 weight percentages (wt %), we found that PVA allowed achieving a homogeneous dispersion of the parent inorganic thermoelectric materials, while still maintaining their high performance. The best produced ink was obtained with 25 wt % of PVA and 75 wt % of chemically treated Bi2Te3 micropowder with a Seebeck coefficient of −166 μV K–1 and a PF of 0.04 μW K–2 m–1. For this optimized concentration, a flexible thermoelectric device was fabricated using n-type thermoelectric inks, which constitutes a major advantage to be applied in printing techniques because of their low curing temperature. The device architecture was composed of 10 stripes with 0.2 × 2.5 cm2 each in a one-leg configuration. This prototype yielded a power output up to ∼9 μW cm–2 with a 46 K temperature gradient (ΔT), and the results were combined with numerical simulations showing a good match between the experimental and the numerical results. The thermoelectric devices studied in this work offer easy fabrication, flexibility, and an attractive thermoelectric output for specific power requirements such as for environmental health monitoring.
a b s t r a c tA systematic set of annealings on arc-melted synthesized Gd 5 Si 2 Ge 2 sample was performed. Through powder X-ray diffraction (XRD) and magnetometry measurements we monitored the effect of varying the annealing time with constant temperature (T = 1473 K) on the formation of the monoclinic (M) crystallographic phase fraction, which is the one responsible for the giant magnetocaloric effect (GMCE) in this compound. The conversion of the orthorhombic O(I) crystallographic phase into M was achieved, resulting in a significant increase of the M mass fraction. Such conversion led to a change in the magnetic transition nature, evolving from a second to a first order transition for the as-cast and annealed samples, respectively. An optimal annealing time range for the M phase conversion was identified to be within 80-120 min at T = 1473 K followed by a rapid quenching to liquid N 2 . Furthermore, an increase up to ∼50% of the magnetocaloric effect was obtained for the sample annealed during 120 min.
Abstract:The preparation and characterization of new salts based on the dissymmetrical TTF derivative CNB-EDT-TTF (cyanobenzene-ethylenedithio-tetrathiafulvalene) and BF 4 − anions, are reported. Depending on the electrocrystallization conditions salts with different stoichiometries, (CNB-EDT-TTF)BF 4 and β"-(CNB-EDT-TTF) 4 BF 4 , can be obtained. The 1:1 salt is an electrical insulator isostructural to the ClO 4 analogue previously described. The 4:1 salt is a new member of the family of 2D metals of this donor with different small anions X, (CNB-EDT-TTF) 4 X, characterized by a bilayer arrangement of the donors and it was obtained in a monoclinic polymorph with a β"-type donor packing pattern. The small anions in this compound are severely disordered between the donor bilayers, which present slightly larger lattice parameters than the isostructural ClO 4 analogue. Both electrical conductivity and thermoelectric power measurements in single crystals denote metallic properties as predicted by electronic band structure calculations. As a consequence of the anion disorder the metallic regime of the electrical conductivity denotes electronic localization effects with a progressive increase of resistivity below~25 K. Because of the larger lattice parameters the intermolecular interactions and electronic bandwidth are decreased compared to other (CNB-EDT-TTF) 4 X salts. The large and positive thermoelectric power S of this compound (~110 µV/K in the range 100-330 K) and its electrical conductivity σ = 20 S/cm at room temperature lead to a power factor S 2 σ = 24 µW/K 2 m, quite large among molecular conductors, placing these compounds as potential candidates for thermoelectric materials.
Articles you may be interested inNonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films Appl. Phys. Lett. 105, 153111 (2014); 10.1063/1.4898601Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes
Two new members of the family of bilayer compounds (CNB-EDT-TTF)4X, (CNB-EDT-TTF = 5-cyanobenzene-ethylenedithio-tetrathiafulvalene) with anions X = ReO4− and SbF6− are reported, their electron transport and optical properties investigated, and then compared to the ClO4− salt that was previously described. These compounds share the same structural type, i.e. bilayers of donors, which are packed in a β″-type pattern and then separated by layers of highly disordered anions. The absolute values of the electrical resistivity measured in single crystals within the layers were found in the range of 5 to 18 (Ωcm)−1, with a significantly sample dependence being ascribed to intrinsic disorder effects. The ClO4− and SbF6− salts exhibit metallic behavior with the resistivity decreasing upon cooling almost linearly with temperature until a broad minimum is reached between 15 and 80 K, depending on crystal quality; this is followed by an upturn of resistivity reaching values at T = 1.5 K that were comparable to those attained at room temperature. The electrical resistivity of the ReO4− salt follows a thermally activated behavior already at T = 300 K, although with a small activation energy in the range 16−18 meV. Thermoelectric power measurements yield large positive values (75–80 µV/K) at ambient temperature with a metallic behavior that is identical for all compounds. Temperature and polarization dependent infrared reflection measurements on single crystals of (CNB-EDT-TTF)4X salts, with X = ClO4−, ReO4−, and SbF6−, have been performed to obtain the optical conductivity and analyze the electronic and vibrational properties. For (CNB-EDT-TTF)4ClO4 the molecular vibrations exhibit a significant variation below T = 23 K, which suggests a charge localization phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.