This study deals with artificial neural network (ANN) modeling a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of engine. To acquire data for training and testing the proposed ANN, two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results reveal that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model based on standard Back-Propagation algorithm for the engine was developed. Multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) were 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values by the model was obtained as 0.0004.
Keywords
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.