We report on the lowest-frequency detection to date of three bursts from the fast radio burst FRB 180916.J0158+65, observed at 328 MHz with the Sardinia Radio Telescope (SRT). The SRT observed the periodic repeater FRB 180916.J0158+65 for five days from 2020 February 20 to 24 during a time interval of active radio bursting, and detected the three bursts during the first hour of observations; no more bursts were detected during the remaining ∼30 hr. Simultaneous SRT observations at 1548 MHz did not detect any bursts. Burst fluences are in the range 37 to 13 Jy ms. No relevant scattering is observed for these bursts. We also present the results of the multi-wavelength campaign we performed on FRB 180916.J0158+65, during the five days of the active window. Simultaneously with the SRT observations, others with different time spans were performed with the Northern Cross at 408 MHz, with XMM-Newton, NICER, INTEGRAL, AGILE, and with the TNG and two optical telescopes in Asiago, which are equipped with fast photometers. XMM-Newton obtained data simultaneously with the three bursts detected by the SRT, and determined a luminosity upper limit in the 0.3–10 keV energy range of ∼1045 erg s−1 for the burst emission. AGILE obtained data simultaneously with the first burst and determined a fluence upper limit in the MeV range for millisecond timescales of . Our results show that absorption from the circumburst medium does not significantly affect the emission from FRB 180916.J0158+65, thus limiting the possible presence of a superluminous supernova around the source, and indicate that a cutoff for the bursting mechanism, if present, must be at lower frequencies. Our multi-wavelength campaign sensitively constrains the broadband emission from FRB 180916.J0158+65, and provides the best limits so far for the electromagnetic response to the radio bursting of this remarkable source of fast radio bursts.
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and Exp Astron (2015) 39:405-421 calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
FRB 180916 is a most intriguing source capable of producing repeating fast radio bursts with a periodic 16.3 day temporal pattern. The source is well positioned in a star forming region in the outskirts of a nearby galaxy at 150 Mpc distance. In this paper we report on the X-ray and γ-ray observations of FRB 180916 obtained by AGILE and Swift. We focused especially on the recurrent 5-day time intervals of enhanced radio bursting. In particular, we report on the results obtained in the time intervals Feb. 3 -8;Feb. 25; Mar. 5 -10; Mar. 22 -28, 2020 during a multiwavelength campaign involving high-energy and radio observations of FRB 180916. We also searched for temporal coincidences at millisecond timescales between the 32 known radio bursts of FRB 180916 and X-ray and MeV events detectable by AGILE. We do not detect any simultaneous event or any extended X-ray and γ-ray emission on timescales of hours/days/weeks.Our cumulative X-ray (0.3-10 keV) flux upper limit of 5 × 10 −14 erg cm −2 s −1 (obtained during 5-day active intervals from several 1-2 ks integrations) translates into an isotropic luminosity upper limit of L X,U L ∼ 1.5× 10 41 erg s −1 . Deep γ-ray observations above 100MeV over a many-year timescale provide an average luminosity upper limit one order of magnitude larger. These results provide the so-far most stringent upper limits on highenergy emission from the FRB 180916 source. Our results constrain the dissipation of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.