We discuss penumbral fine structure in a small part of a pore, observed with the CRISP imaging spectropolarimeter at the Swedish 1-m Solar Telescope (SST), close to its diffraction limit of 0.16 arcsec. Milne-Eddington inversions applied to these Stokes data reveal large variations of field strength and inclination angle over dark-cored penumbral intrusions and a dark-cored light bridge. The mid-outer part of this penumbra structure shows 0.3 arcsec wide spines, separated by 1.6 arcsec (1200 km) and associated with 30 deg inclination variations. Between these spines, there are no small-scale magnetic structures that easily can be be identified with individual flux tubes. A structure with nearly 10 deg more vertical and weaker magnetic field is seen midways between two spines. This structure is co-spatial with the brightest penumbral filament, possibly indicating the location of a convective upflow from below.Comment: Accepted for publication in ApJL 17 Oct 2008. One Figure adde
Context. Solar convection in a strong plage, in which the magnetic field is vertical and strong over extended regions, but much weaker than in the umbrae of large sunspots, has so far not been well studied. This has been mostly because of a lack of spectropolarimetric data at adequate spatial resolution. The combination of a large solar telescope, such as the Swedish 1-m Solar Telescope, adaptive optics, powerful image reconstruction techniques, and a high-fidelity imaging spectropolarimeter is, however, capable of producing such data. Aims. In this work, we study and quantify the properties of strong-field small-scale convection and compare these observed properties with those predicted by numerical simulations. Methods. We analyze spectropolarimetric 630.25 nm data from a unipolar ephemeral region near the Sun center. We use line-of-sight velocities and magnetic field measurements obtained with Milne-Eddington inversion techniques along with measured continuum intensities and Stokes V amplitude asymmetry at a spatial resolution of 0. 15 to establish statistical relations between the measured quantities. We also study these properties for different types of distinct magnetic features, such as micropores, bright points, ribbons, flowers, and strings. Results. We present the first direct observations of a small-scale granular magneto-convection pattern within extended regions of a strong (more than 600 G on average) magnetic field. Along the boundaries of the flux concentrations, we see mostly downflows and asymmetric Stokes V profiles, consistent with synthetic line profiles calculated from MHD simulations. We note the frequent occurrence of bright downflows along these boundaries. In the interior of the flux concentrations, we observe an up/down flow pattern that we associate with small-scale magnetoconvection, appearing similar to that of field-free granulation but with scales 4 times smaller. Measured rms velocities are 70% of those of nearby field-free granulation, even though the average radiative flux is not lower than that of the quiet Sun. The interiors of these flux concentrations are dominated by upflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.