This paper investigates certain novel switching sequences involving division of active vector time for space vectorbased pulsewidth modulation (PWM) generation for a voltage source inverter. This paper proposes two new sequences, and identifies all possible sequences, which result in the same average switching frequency as conventional space vector PWM (CSVPWM) at a given sampling frequency. This paper brings out a method for designing hybrid PWM techniques involving multiple sequences to reduce line current ripple. The three proposed hybrid PWM techniques (three-zone PWM, five-zone PWM and sevenzone PWM) employ three, five and seven different sequences, respectively, in every sector. Each sequence is employed in a spatial region within the sector where it results in the lowest rms current ripple over the given sampling period. The proposed techniques lead to a significant reduction in THD over CSVPWM at high line voltages. The five-zone technique results in the lowest THD among real-time techniques with uniform sampling, while the seven-zone technique is the best among real-time techniques with twin sampling rates. The superior harmonic performance of the proposed techniques over CSVPWM and existing bus-clamping PWM techniques is established theoretically as well as experimentally.
The objective of the present work is to improve the output waveform of three level inverters used in high-power applications, where the switching frequency is very low. This is achieved by maintaining the synchronization, half-wave symmetry, quarter-wave symmetry, and three-phase symmetry in the pulsewidth modulation (PWM) waveforms. The principles of achieving synchronization and symmetries in terms of space vectors for three level inverters are presented. A novel synchronized space vector pulsewidth modulation (SVPWM) algorithms is proposed and verified experimentally. The experimental waveforms of the inverter output voltage and motor no load current for different operating conditions of the drive are presented. The performance measure in terms of the weighted total harmonic distortion (THD) of the line voltage is computed for the linear modulation region of the drive for the proposed algorithm and compared with that of synchronized SVPWM and synchronized sine-triangle pulsewidth modulation (SPWM) technique. The comparative results show that consideration of synchronization and symmetry results in improved THD. Another significant feature of the proposed algorithm is that the symmetry and synchronization leads to self-balancing of the direct current (dc) bus capacitor voltages over every one third cycle of the fundamental.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.