In this study we investigated the multi-stage collision-induced dissociation (CID) of N-terminally acetylated di-, tri- and tetrapeptides in the form of C-terminal ethyl, n-propyl, isopropyl, n-butyl and tert-butyl esters and cationized by the attachment of Li(+), Na(+) and Ag(+). While methyl ester versions of the metal cationized peptides primarily eliminate H(2)O following collisional activation and dissociation, the ethyl, propyl and butyl ester versions of the peptides exhibit a dissociation pathway consistent with gamma-hydrogen transfer to the C-terminal carbonyl group, with associated elimination of an alkene, in a McLafferty-type rearrangement. The rearrangement leaves a metal cationized, free-acid form of the peptide, as confirmed by comparing the multi-stage CID of rearrangement products generated from peptide esters with the CID of corresponding metal cationized free-acid peptides. The transfer of a gamma-hydrogen in the rearrangement reaction was confirmed by investigating the CID of ethyl esters for which the terminal methyl group was labeled with deuterium. We found that the rearrangement product was significantly more abundant, relative to other product ions, when derived from isopropyl and tert-butyl esters than from ethyl, n-propyl or n-butyl ester analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.