Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson's disease (PD) by genome-wide association studies (GWAS). The most common LRRK2 mutation, G2019S, which is relatively rare in the total population, gives rise to increased kinase activity. As such, LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the discovery and optimization of a novel series of potent LRRK2 inhibitors, focusing on improving kinome selectivity using a surrogate crystallography approach. This resulted in the identification of 14 (PF-06447475), a highly potent, brain penetrant and selective LRRK2 inhibitor which has been further profiled in in vivo safety and pharmacodynamic studies.
In vivo gene therapy shows promise as a treatment for both genetic and acquired disorders. The hepatic asialoglycoprotein receptor (ASGPr) binds asialoorosomucoid-polylysine-DNA (ASOR-PL-DNA) complexes and allows targeted delivery to hepatocytes. The tris(N-acetylgalactosamine aminohexyl glycoside) amide of tyrosyl(glutamyl) glutamate [YEE(GalNAcAH)3] has been previously reported to have subnanomolar affinity for the ASGPr. We have used an iodinated derivative of YEE(GalNAcAH)3 linked to polylysine and complexed to the luciferase gene (pCMV-Luc) in receptor-binding experiments to establish the feasibility of substituting ASOR with the synthetic glycopeptide for gene therapy. Scatchard analyses revealed similar Kd values for both ASOR and the glycopeptide. Binding and internalization of 125I-Suc-YEE(GalNAcAH)3 were competitively inhibited with either unlabeled ASOR or glycopeptide. The reverse was also true; 125I-ASOR binding was competed with unlabeled YEE(GalNAcAH)3 suggesting specific binding to the ASGPr by both compounds. Examination of in vivo delivery revealed that the 125I-labeled glycopeptide complex mimicked previous results observed with 125I-ASOR-PL-DNA. CPM in the liver accounted for 96% of the radioactivity recovered from the five major organs (liver, spleen, kidney, heart, and lungs). Cryoautoradiography displayed iodinated glycopeptide complex bound preferentially to hepatocytes rather than nonparenchymal cells. In vitro, as well as in vivo, transfections using the glycopeptide-polylysine-pCMV-luciferase gene complex (YG3-PL-Luc) resulted in expression of the gene product. These data demonstrate that the YEE(GalNAcAH)3 synthetic glycopeptide can be used as a ligand in targeted delivery of DNA to the liver-specific ASGPr.
Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFa) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.