This paper analyses an SIRS-type model for infectious diseases with account for behavioural changes associated with the simultaneous spread of awareness in the population. Two types of awareness are included into the model: private awareness associated with direct contacts between unaware and aware populations, and public information campaign. Stability analysis of different steady states in the model provides information about potential spread of disease in a population, and well as about how the disease dynamics is affected by the two types of awareness. Numerical simulations are performed to illustrate the behaviour of the system in different dynamical regimes.
This paper analyses the dynamics of infectious disease with a concurrent spread of disease awareness. The model includes local awareness due to contacts with aware individuals, as well as global awareness due to reported cases of infection and awareness campaigns. We investigate the effects of time delay in response of unaware individuals to available information on the epidemic dynamics by establishing conditions for the Hopf bifurcation of the endemic steady state of the model. Analytical results are supported by numerical bifurcation analysis and simulations.Comment: 15 pages, 5 figure
This paper investigates the effects of vaccination on the dynamics of infectious disease, which is spreading in a population concurrently with awareness. The model considers contributions to the overall awareness from a global information campaign, direct contacts between unaware and aware individuals, and reported cases of infection. It is assumed that there is some time delay between individuals becoming aware and modifying their behaviour. Vaccination is administered to newborns, as well as to aware individuals, and it is further assumed that vaccine-induced immunity may wane with time. Feasibility and stability of the disease-free and endemic equilibria are studied analytically, and conditions for the Hopf bifurcation of the endemic steady state are found in terms of system parameters and the time delay. Analytical results are supported by numerical continuation of the Hopf bifurcation and numerical simulations of the model to illustrate different types of dynamical behaviour.
In this paper, the aim is to capture the global pandemic of COVID-19 with parameters that consider the interactions among individuals by proposing a mathematical model. The introduction of a parsimonious model captures both the isolation of symptomatic infected individuals and population lockdown practices in response to containment policies. Local stability and basic reproduction numbers are analyzed. Local sensitivity indices of the parameters of the proposed model are calculated, using the non-normalization, half-normalization, and full-normalization techniques. Numerical investigations show that the dynamics of the system depend on the model parameters. The infection transmission rate (as a function of the lockdown parameter) for both reported and unreported symptomatic infected peoples is a significant parameter in spreading the infection. A nationwide public lockdown decreases the number of infected cases and stops the pandemic’s peak from occurring. The results obtained from this study are beneficial worldwide for developing different COVID-19 management programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.