The effects of mass transfer (e.g. via evaporation) of surface-active solutes on the hydrodynamic stability of capillary liquid jets are studied. A linear temporal stability analysis is carried out yielding evolution equations for systems satisfying general non- linear kinetic adsorption relations and accompanying surface constitutive equations. The discussion of the instability mechanism associated with the Marangoni effect clarifies that solute transfer into the jet is destabilizing whereas transfer in the opposite direction reduces instability. The general analysis is illustrated by a system satisfying Langmuir-type kinetic relations. Contrary to a clean system (i.e. in the absence of surfactants), reduced jet viscosity may lead to a substantial reduction in perturbation growth. Furthermore, the Marangoni effect gives rise to an overstability mechanism whereby perturbations whose dimensionless wavenumbers exceed unity grow with time through oscillations of increasing amplitude. The common diffusion-control approximation constitutes an upper bound which substantially overestimates the actual growth of perturbations. Considering solutes belonging to the homologous series of normal alcohols in water–air systems, the intermediate cases (e.g. hexanol–water–air which is ‘mixed-control’) are the most susceptible to Marangoni instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.