Purpose. This paper presents the result of the research carried out on the effect of increasing temperature and stresses with depth of mining on the stability of stope within the Bushveld Igneous Complex (BIC), where the South African Platinum mines are located.Methods. The stability of stope at the platinum mine was analysed using numerical modelling. A commercial geotechnical software, FLAC (Fast Lagrangian Analysis of Continua), was used for the numerical modelling to study and to understand the behaviour of the rock in the deep and hot underground excavations. The modelling is hypothetical in the sense that there are no direct field measurements of failure or displacements. However, some field data received from the mines include virgin rock temperature, in-situ stress data.Findings. The plots of the yielded zones of the model for excavations at the depths of 1073, 2835 and 5038 m revealed that there would be shear and tensile failures at 2835 and 5038 m, however, these failures will be higher at 5038 m than what will be witnessed at shallow depths. This observation could be attributed to higher in-situ stresses and virgin rock temperatures.Originality. Major researches on the platinum mine have not extensively consider the influence of the increased temperature at the ultra-depth level hence this study aims to fill the gap by studying the effect of the increased temperature and stresses on the stability of stopes at the ultra-depth levels within the BIC.Practical implications. This research showed that mining at ultra-deep levels would pose a challenge of an increase in horizontal and vertical displacements with increasing depth. It is recommended that horseshoe-shaped stopes could be preferred in such conditions to avoid high-stress concentration at the corners of the roof of the stopes, which may reduce failures from shallow-depth to ultra-depth levels. Also, based on the magnitude of convergence that will be experienced at ultra-deep mining levels (3500 to 5000 m), it is recommended that access development is located in the more competent strata, such as in mottled anorthosite with an average UCS of 82 MPa.
Purpose. To examine the relationships between strength properties and strain quantities associated with the brittle compression process of hard brittle rocks.Methods. The data used in this paper were obtained from laboratory uniaxial compression tests carried out on 84 different types of hard rocks in accordance with Ulusay (2015) proposed standards. The strength properties and the strain quantities were coordinated so that each of the strain quantities or their ratios is compared individually with the strength properties of the rocks as for their relationship.Findings. In all the cases the relationships between the strain ratios and the strength parameters are stronger than when compared with individual strain quantities. A threshold level for strain ratio Ɛ vf / Ɛ cd may be assumed as the limit for fracture initiation above which the rock may experience brittle fracture failure.Originality. Scientific sources demonstrate few laboratory studies as for strength properties-strain quantities ratio. Most of the published research has been concentrated on crack damage stress (σ cd ) and uniaxial compressive strength (σ c ) of characteristic stress levels during compression. The paper has performed detailed analysis of the problem using experimental results of the relationships between strength properties and strain quantities under the deformation process of hard rocks. Practical implications.The relationships can improve our knowledge to evaluate correctly the stability of excavations, design of stable structures such as tunnels and excavations for mining and civil engineering purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.