Three F1 progenies and their families in the segregating generations (F3, F4, F5 and F6), obtained after crossing resistant × susceptible wheat genotypes were studied in the field to determine the genetics of resistance to spot blotch caused by Bipolaris sorokiniana. Spot blotch scores in the F1 generation showed absence of dominance. Individually threshed F2 plants were used to advance the generations. Progenies (200‐250) of resistant genotypes Acc. No. 8226, Mon/Ald, Suzhoe#8 crossed with susceptible ‘Sonalika’ were evaluated in the F3, F4, F5 and F6 generations under induced epiphytotic conditions. Based on disease score distribution in individual progeny rows, F3 progenies were grouped into four classes: homozygous resistant, homozygous susceptible, segregating resistant and segregating susceptible. Resistance appeared to be under the control of three additive genes. The presence of three genes was also noted in the distribution of F4 and F5 lines. In the case of F6 progeny rows, both quantitative and qualitative models were used to estimate the number of segregating genes based on a 2‐year trial. It appeared that resistance to spot blotch was controlled by the additive interaction of more than two genes, possibly only three.
Spot blotch is an important disease of wheat (Triticum aestivum L.) in South Asia. Division of test sites for this disease into homogenous subregions is expected to contribute to more efficient evaluation and better differentiation of cultivars. Data from a collaborative regional program of South Asia conducted by CIMMYT were analyzed to group testing sites into relatively homogenous subregions for spot blotch area under the disease progress curve (AUDPC). Five‐year data of eight locations from Eastern Gangetic Plains Nursery (EGPSN) and five locations of the Eastern Gangetic Plains Yield Trial (EGPYT) conducted in three countries (India, Nepal, and Bangladesh) of South Asia were used. A hierarchical cluster analysis was used to group locations on the basis of genotype × location interaction effects for spot blotch AUDPC. Cluster analysis divided South Asia into two broad regions and four subregions. This classification was not entirely consistent with the geographic distribution of locations, but clusters mostly followed general geographic‐climatic locations. The locations Varanasi (India) and Bhairahawa (Nepal) were identified as the most suitable sites for evaluation of spot blotch, followed by Rampur (Nepal). The major determinant for the clustering was mean temperature. The results suggest that the major wheat region of South Asia can be divided into subregions, which may reduce the cost of resistance evaluation and aid in developing wheat with resistance to this disease.
Heat is an important abiotic stress during wheat (Triticum aestivum L.) grain-filling in South Asia. A study was undertaken to determine effectiveness of selection for reduction in 1000-kernel weight (TKWR) under heat stress to increase grain yield. Selection was made for low and high TKWR and selected progenies were evaluated in timely and late seeded trials at two locations in Nepal in 2003. One thousand kernel weight (TKW), biomass yield, grain yield, harvest index (HI), grain-filling duration (GFD) and area under spot blotch progress curve per day (AUDPC/day) were examined. The low and high TKWR groups did not differ significantly for TKW, biomass yield, grain yield, HI, days to heading, GFD and AUDPC/day under timely seeding. However, low TKWR lines showed higher TKW, biomass yield, grain yield, HI, and GFD and lower AUDPC/day than the lines with high TKWR under late seeding. Realized heritability estimates for TKWR ranged from 0.68 to 0.85. The findings show that selection for low TKWR could be used as an indirect selection criterion to identify high grain yielding lines under terminal heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.