This paper explores issues to consider around integrating direct, explicit protection of the environment into the current system of radiological protection, which is focused on the protection of humans. Many issues around environmental radiological protection have been discussed, and ready-to-use toolboxes have been constructed for assessing harm to non-human biota, but it is not clear how (or even if) these should be fitted into the current system of protection. Starting from the position that the current approach to protecting the environment (namely that it follows from adequately protecting humans) is generally effective, this paper considers how explicit radiological protection of the environment can be integrated with the current system, through developing a 'worked example' of how this could be done and highlighting issues peculiar to protection of the environment. The aim of the paper is to promote debate on this topic, with the ultimate aim of ensuring that any changes to the system are consensual and robust.
A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method.
Current activity around radiological protection of the environment implies concerns over the effectiveness of the current approach to this--namely if humans are adequately protected, then so are non-human species. This study uses models and data currently available in the public domain to carry out a 'quick and dirty' examination of whether protecting humans does indeed imply that other species are well protected. Using marine discharges and human habits data for operational coastal UK nuclear power stations, this study compares doses to humans and a set of reference non-human species. The study concludes that the availability of data and models, and consequent ease of studying potential effects on non-humans (as well as humans), vindicates recent efforts in this area, and that these imply a high level of protection, in general, for non-human biota from UK nuclear power station marine discharges. In general terms, the study finds that protection of non-human biota relies on taking ingestion and external exposure doses to humans into account; where only one of these pathways is considered, the level of protection of non-human biota through protection of humans would depend on the radionuclide(s) in question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.