Three types of sintered alloys were fabricated based on cobalt, nickel and high-temperature alloy ZhS32-VI matrix with titanium carbide strengthening phase. TiC content was in a range of 30–50 vol. %. The melting temperatures of alloys are higher than 1320°C, and they may undergo undamaged through all technological procedures together with turbine blades, including soldering and outgassing. DSC analyses indicates no additional thermal effects until melting, which confirms their structural stability. The examinations of microstructure revealed three types of constituents – TiC particles, matrix solid solution and blow outs – structural defects having negative effects on all the studied properties. It was found that heat resistance of nickel based sintered alloys at the temperature of 1100°C is superior as compared with the alloys based on cobalt and alloy ZhS32-VI. It has been established that wear resistance in conditions of fretting wear at temperatures of 20, 850, 950 and 1050°C of sintered alloy with ZhS32-VI matrix is mostly superior as compared with the other alloys. The properties of produced alloys allow to use them for manufacturing of components of friction couples operating in conditions of high temperature fretting wear, including protective pads of turbine blades top shrouds contact faces.
Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2015 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.