The aim of the research is to reduce the unsprung mass, the moment of inertia of the racing automobile’s wheel while maintaining the necessary strength due to the using of composite materials in its construction. Currently, the composite materials have been obtained a widespread usage as structural materials in the automobile assemblies and units. Particularly, the using of modern composite materials in the transmission elements of the automobile, such as drive shafts, axle shafts or wheels, makes it possible to substantially improve the performances of the wheeled vehicle: reduce the full and the unsprung weight. It is possible to point out from the modern composite materials, the polymeric composite materials having carbon fibers as a reinforcing element, which are possessing a low density and the best combining a high level of specific strength with producibility of the products. The object of the research is the racing automobile’s wheel which belongs to the class of “Formula Student”. The usage of composite materials in the construction of similar wheels, as well as the estimated evaluation of the wheel’s strength during its manufacturing from composite materials are discussed. The regulations of the competitions permit a great freedom in choosing the wheel construction. The estimated strength evaluation was carried out by the finite element method, the original finite element wheel model was developed for this purpose taking into account the anisotropic properties of the reinforced materials. The computational investigation of the strength of the selected construction showed that the rim which is made of the composite material has an excessive safety factor at the design loads. The proposed constructive decision allows to reduce the wheel weight by 33% (up to 1.68 kg) in comparison with the one-piece wheel made of magnesium alloys (2.5 kg).
The paper proposes a method of creating wheel supporting ring (insert) for military and civil ve- hicles. Key points of the method are illustrated on example of wheel internal support design.
The aim of the work is to reduce the unsprung weight of the wheel of a racing automobile due to the use of a disc made of titanium alloy in the brake mechanism. The object of the study is the brake disc of a vehicle of the Formula Student class. The subject of research is the use of titanium alloy in the design of the brake disc and its performance evaluation. As part of the work, an analysis of the thermal loading of the brake disc made of titanium alloy and the experimental verification of its performance were made. The calculations of thermal loading were carried out by the finite element method. To this end, a calculation method has been developed taking into account changes in the heat flux and convection coefficient during multiple braking. The paper presents the results obtained when carrying out calculations in accordance with this method. The numerical evaluation showed that the temperature arising in the brake mechanism does not exceed the permissible for the working capacity of the brake mechanism. The full-scale experiment showed that the calculated disk temperature, which occurs during braking, is close to the temperature established during the full-scale experiment. The error is not more than 13%. A full-scale experiment showed that the brake disc made of titanium alloy is not operational with the selected manufacturing technology. The conclusions were drawn on the applicability of the above method of thermal analysis of the brake disc, on the performance of the structure, and proposals were made for improving its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.