The next generation "Stage-4" ground-based cosmic microwave background (CMB) experiment, CMB-S4, consisting of dedicated telescopes equipped with highly sensitive superconducting cameras operating at the South Pole, the high Chilean Atacama plateau, and possibly northern hemisphere sites, will provide a dramatic leap forward in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 will be designed to cross critical thresholds in testing inflation, determining the number and masses of the neutrinos, constraining possible new light relic particles, providing precise constraints on the nature of dark energy, and testing general relativity on large scales.CMB-S4 is intended to be the definitive ground-based CMB project. It will deliver a highly constraining data set with which any model for the origin of the primordial fluctuations-be it inflation or an alternative theory-and their evolution to the structure seen in the Universe today must be consistent. While we have learned a great deal from CMB measurements, including discoveries that have pointed the way to new physics, we have only begun to tap the information encoded in CMB polarization, CMB lensing and other secondary effects. The discovery space from these and other yet to be imagined effects will be maximized by designing CMB-S4 to produce high-fidelity maps, which will also ensure enormous legacy value for CMB-S4. CMB-S4 is the logical successor to the Stage-3 CMB projects which will operate over the next few years. For maximum impact, CMB-S4 should be implemented on a schedule that allows a transition from Stage 3 to Stage 4 that is as seamless and as timely as possible, preserving the expertise in the community and ensuring a continued stream of CMB science results. This timing is also necessary to ensure the optimum synergistic enhancement of the science return from contemporaneous optical surveys (e.g., LSST, DESI, Euclid and WFIRST). Information learned from the ongoing Stage-3 experiments can be easily incorporated into CMB-S4 with little or no impact on its design. In particular, additional information on the properties of Galactic foregrounds would inform the detailed distribution of detectors among frequency bands in CMB-S4. The sensitivity and fidelity of the multiple band foreground measurements needed to realize the goals of CMB-S4 will be provided by CMB-S4 itself, at frequencies just below and above those of the main CMB channels. This timeline is possible because CMB-S4 will use proven existing technology that has been developed and demonstrated by the CMB experimental groups over the last decade. There are, to be sure, considerable technical challenges presented by the required scaling-up of the instrumentation and by the scope and complexity of the data analysis and interpretation. CMB-S4 will require: scaled-up superconducting detector arrays with well-understood and robust material properties and processing techniques; high-throughput mmwave telescopes and optics with unprecedented precisi...
No abstract
The Sunyaev-Zel'dovich effect (SZE) provides a unique way to map the largescale structure of the universe as traced by massive clusters of galaxies. As a spectral distortion of the cosmic microwave background, the SZE is insensitive to the redshift of the galaxy cluster, making it well-suited for studies of clusters at all redshifts, and especially at reasonably high redshifts (z > 1) where the abundance of clusters is critically dependent on the underlying cosmology. Recent high signal-to-noise detections of the SZE have enabled interesting constraints on the Hubble constant and the matter density of the universe using small samples of galaxy clusters. Upcoming SZE surveys are expected to find hundreds to thousands of new galaxy clusters, with a mass selection function that is remarkably uniform with redshift. In this review we provide an overview of the SZE and its use for cosmological studies with emphasis on the cosmology that can, in principle, be extracted from SZE survey yields. We discuss the observational and theoretical challenges that must be met before precise cosmological constraints can be extracted from the survey yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.