Due to the deepening of COVID-19, high-intensity social distancing has been prolonged and many social problems have been cured. In particular, physical and psychological isolation occurred due to the non-face-to-face system and a lot of damage occurred. The various social problems caused by Corona acted as severe stress for all those affected by Corona 19, and eventually acted as a factor threatening mental health such as depression. While the number of people suffering from mental illness is increasing, the actual use of mental health services is low. Therefore, it is necessary to establish a system for people suffering from mental health problems. Therefore, in this study, depression detection and emergency detection models were constructed based on sensor information using smartphones from depressed subjects and general subjects. For the detection of depression and emergencies, VAE, DAGMM, ECOD, COPOD, and LGBM algorithms were used. As a result of the study, the depression detection model had an F1 score of 0.93 and the emergency situation detection model had an F1 score of 0.99. direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.