Lichen samples from contrasted environments, influenced by various anthropic activities, were investigated focusing on the contaminant signatures according to the atmospheric exposure typologies. Most of the contaminant concentrations measured in the 27 lichen samples, collected around the industrial harbor of Fos-sur-Mer (France), were moderate in rural and urban environments, and reached extreme levels in industrial areas and neighboring cities (Al up to 6567 mg kg, Fe 42,398 mg kg, or ΣPAH 1417 μg kg for example). At the same time, a strong heterogeneity was noticed in industrial samples while urban and rural ones were relatively homogeneous. Several metals could be associated to steel industry (Fe, Mn, Cd), road traffic, and agriculture (Sb, Cu, Sn), or to a distinct chemical installation (Mo). As well, PCDFs dominated in industrial samples while PCDDs prevailed in urban areas. The particularities observed supported the purpose of this work and discriminated the contributions of various atmospheric pollution emission sources in lichen samples. A statistical approach based on principal component analysis (PCA) was applied and resolved these potential singularities into specific component factors. Even if a certain degree of mixing of the factors is pointed out, relevant relationships were observed with several atmospheric emission sources. By this methodology, the contribution of industrial emissions to the atmospheric metal, PAH, PCB, and PCDD/F levels was roughly estimated to be 60.2%, before biomass burning (10.2%) and road traffic (3.8%). These results demonstrate that lichen biomonitoring offers an encouraging perspective of spatially resolved source apportionment studies.
Chlorination of seawater is one of the most effective technologies for industrial biofouling control. However, chlorination leads to the formation of halogenated chlorination byproducts (CBPs) associated with potential risks to environmental and human health. The present study investigated the occurrence and distribution of CBPs in the Gulf of Fos, a semi-enclosed bay where chlorinated effluents of multiple industrial plants are discharged. Seawater samples (surface and bottom) were collected at 24 sampling stations, with some near industrial outlets and others dispersed throughout the bay. Sediment samples were also collected at 10 sampling stations. Physicochemical parameters including water temperature, pH, salinity, bromide content, and free and total residual oxidant were determined. Several chemical classes of CBPs including trihalomethanes, haloacetic acids, haloacetonitriles, trihaloacetaldehydes, and halophenols were analyzed. Bromoform was the most abundant CBP in seawater, and it was detected at most of the sampling stations of the bay with highest concentrations occurring near the industrial effluent outlets. Dibromoacetic acid was the second most abundant CBP at most of the sites followed by dibromoacetonitrile. Other detected CBPs included tribromoacetic acid, bromochloroacetonitrile, and bromal hydrate. To our knowledge, the concentration of the latter CBP was reported here for the first time in the context of industrial seawater chlorination. In sediments, two bromine-containing halophenols (2-chloro-4-bromophenol and 2,4,6-tribromophenol) were detected at two sampling stations. Ecotoxicological assays and risk assessment studies based on the detected environmental concentrations are warranted to elucidate the impacts of marine CBP contamination.
Bromoform (CHBr3) belongs to very-short-lived substances (VSLSs), which are important precursors of reactive bromine species (BrOx) contributing to tropospheric and stratospheric chemistry. To date, most models calculating bromine product emissions to the atmosphere only consider the natural production of CHBr3 from marine organisms such as macroalgae and phytoplankton. However, CHBr3 has many other anthropogenic sources (coastal industrial sites, desalination and wastewater plants, ballast waters, and seawater toilets) that may drastically increase the amounts emitted in the atmosphere. Here, we report the levels of CHBr3 released in water and air (according to real-time and offline measurements by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and gas chromatography with electron capture detection (GC-ECD)) in a highly industrialized area where 3 million cubic meters of chlorinated seawater is released each day, which were 3 measured during six field campaigns (at sea and on land) distributed over three years. The highest levels found during this survey (which were correlated to the physical-chemical characteristics of the water, meteorological and hydrological conditions, salinity, and temperature gradients along the water column) reached 34.6 µg L -1 in water (100-10,000 times higher than reported natural levels) and 3.9 ppbv in the air (100 times higher than the maximum reported value to date). These findings suggest the need to undertake sampling and analysis campaigns as close as possible to chlorinated discharges, as anthropogenic CHBr3 sources from industrial discharges may be a missing factor in global flux estimates or organic bromine to the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.