In this study, a structural-deformation analysis of the process of crack development is performed, on the basis of which an engineering methodology is developed for assessing the endurance limit and resource of large-sized structures. A simple analytical dependence (correlation аналитическая зависимость) was obtained, which allows one to determine the critical size of macrocracks for ferritic-pearlitic steels without using the well-known Griffith formula. The results of calculating the cracks critical lengths of various steels depending on their yield strength are presented. The analytical dependence of the calculation of the fatigue limit for the most dangerous symmetric loading cycle according to the standard set of mechanical characteristics of ferrite-pearlite steel is presented. The obtained results make it possible to calculate the endurance limit of structural elements of marine equipment and other structures subject to cyclic loads
In the constructions and weld seals microdefects while repeated stress lead to metal structure damage, low-cycle and high-cycle fatigue, and cracks dissemination. The calculation method of operating life estimate presupposes a microcrack development hypothetical speed application. This speed in many cases is unknown. Initial speed determination suggested in this work is based on endurance limit values design analysis when considering a combined problem for the first two sections of fatigue failure kinetic diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.