3-roller bending process was investigated using physical modelling and computer simulation. Main technological parameters influence on the formation of tube billet diameter are present; these main technological parameters are upper roller displacement and distance between axes of bearing rollers. Complete factorial experiment was conducted using bending machine, radius of the produced tube billet was set as response function. Conditions for conducting the complete factorial experiment using bending machine and techniques of tube billet radius estimation by graphical-analytical method are presented. At that least square method and SolidWorks software were applied. Regression equations for calculating tube billet diameter conditionally upper roller displacement and distance between axes of bearing rollers were obtained. Influence of these two factors on tube billet radius formation was demonstrated. Finite element method (FEM) computer simulation of the forming process was done with respect to parameters corresponding to parameters of physical modelling experiment using bending machine. FEM computer simulation was done using QForm software. QForm simulation was realized for elastic-plastic bending in terms of two-dimensional deformation. Point tracking was applied to calculate coordinates of the points of the formed sheet and bending parameters. It allowed estimation of the neutral line location in the formed sheet when bending stage was finished. Presented results of computer simulation are figures with trajectories of the tracked points; figures illustrating changing of distance between tracked points; graph of accumulated strain changing through sheet's thickness. New criterion for neutral line (neutral surface) was proposed for sheet bending process. Results of the research can be effective when exploring Heausler AG bending equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.