The outer surface of the facet lenses in the compound eyes of moths consists of an array of excessive cuticular protuberances, termed corneal nipples. We have investigated the moth-eye corneal nipple array of the facet lenses of 19 diurnal butterfly species by scanning electron microscopy, transmission electron microscopy and atomic force microscope, as well as by optical modelling. The nipples appeared to be arranged in domains with almost crystalline, hexagonal packing. The nipple distances were found to vary only slightly, ranging from about 180 to 240 nm, but the nipple heights varied between 0 (papilionids) and 230 nm (a nymphalid), in good agreement with previous work. The nipples create an interface with a gradient refractive index between that of air and the facet lens material, because their distance is distinctly smaller than the wavelength of light. The gradient in the refractive index was deduced from effective medium theory. By dividing the height of the nipple layer into 100 thin slices, an optical multilayer model could be applied to calculate the reflectance of the facet lenses as a function of height, polarization and angle of incidence. The reflectance progressively diminished with increased nipple height. Nipples with a paraboloid shape and height 250 nm, touching each other at the base, virtually completely reduced the reflectance for normally incident light. The calculated dependence of the reflectance on polarization and angle of incidence agreed well with experimental data, underscoring the validity of the modelling. The corneal nipples presumably mainly function to reduce the eye glare of moths that are inactive during the day, so to make them less visible for predators. Moths are probably ancestral to the diurnal butterflies, suggesting that the reduced size of the nipples of most butterfly species indicates a vanishing trait. This effect is extreme in papilionids, which have virtually absent nipples, in line with their highly developed status. A similar evolutionary development can be noticed for the tapetum of the ommatidia of lepidopteran eyes. It is most elaborate in moth-eyes, but strongly reduced in most diurnal butterflies and absent in papilionids.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 m. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%-14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Experimentalobservations of self-affine scaling and kinetic roughening at sub-micron length scales are reviewed for thin solid films and ion-beam eroded surfaces.
In order to explore repulsive Casimir/van der Waals forces between solid materials with liquid as the intervening medium, we analyze dielectric data for a wide range of materials as for example PTFE, polystyrene, silica and more than twenty liquids. Although significant variation in the dielectric data from different sources exist, we provide a scheme based on measured static dielectric constants, refractive indices, and applying Kramers Kronig (KK) consistency to dielectric data to create accurate dielectric functions at imaginary frequencies. The latter is necessary for more accurate force calculations via the Lifshitz theory allowing reliable predictions of repulsive Casimir forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.