Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes.
The present paper is the second part of a combined (experimental and computational) study on stall cells (SCs) on a rectangular wing. In the first part, tuft data were used in order to geometrically characterize a stabilized SC resulting from a localized spanwise disturbance introduced by a zigzag tape. Here, pressure measurements on the model and in the wake and aerodynamic polars at midspan are reported. The wing model had an aspect ratio value of 2, the Reynolds number was 10 6 and the range of angles of attack (a) was from À6 to 16. Experimental results confirm previous findings. Furthermore, two-dimensional and three-dimensional Reynolds Averaged Navier-Stokes RANS simulations are used in order to better understand the structure of SCs. 3D simulations reproduce the experimental data with a 3 delay in a and permit a qualitative analysis. It is found that the SC vortices start normal to the wing surface and extend downstream in the wake; the evolution of the SC vortices in the wake is in strong interaction with the separation line vortex and the trailing edge line vortex; as the SC vortex develops downstream in the wake, its centreline is contracted towards the SC centre; the wing wake is pushed upstream at the centre of the SC and downstream at the sides by the SC vortices; spanwise lift and drag distributions always attain their minimum at the SC centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.