Abstract. On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, threedimensional ion distribution of the major magnetospheric ions (H + , He + , He ++ , and O + ) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5 • ) angular resolution, and a Hot Ion AnalCorrespondence to: H. Rème (Henri.Reme@cesr.fr) yser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6 • ) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range.
Using four months of tail data obtained by the three‐dimensional plasma instrument on board the AMPTE/IRM satellite in 1986, we have done a statistical survey on the behavior of ion and electron moments in the central plasma sheet. Almost 80,000 spin averages of plasma density, ion bulk velocity, ion and electron temperature, and plasma β were analyzed with respect to differences between their values in the inner and outer central plasma sheet as well as their dependence on magnetic activity. The ion temperature increases with increasing magnetic activity while the ion density decreases during disturbed intervals, except in the neutral sheet neighborhood at smaller radial distances. The ion and electron temperatures in the central plasma sheet are highly correlated, with Ti/Te being constant over a wide range of temperatures and about twice as large as in the distant tail. The average ion flow speeds in the central plasma sheet are below 100 km/s and nearly identical to those found in the plasma sheet boundary layer, although the distribution functions usually are quite different. High‐speed flows do occur, but in bursts of most often less than 1 min duration with intermittent intervals of nearly stagnant plasma. The distribution of flow directions strongly favors sunward flow for velocities above 300 km/s, indicating that a near‐earth neutral line is rarely, if ever, located inside of XGSM = −19 RE.
Eleven passes of the ISEE satellites through the frontside terrestrial magnetopause (local time 9 -'17 h; GSM latitude 2 0 -43 0 N) have been identified, where the plasma velocity in the magnetopause and boundary laver was substantially larger than in the magnetosheath. This paper examines the nature of°the plasma flow, magnetic field, and energeticparticle fluxes in these regions, with a view to determining whether the velocity enhancements can be explained by magnetic-field reconnection.
Further Heos 2 plasma and magnetic field data obtained in the frontside boundary layers of the magnetosphere are presented. They reveal that the low‐latitude extension of the entry layer is of a somewhat different nature. The most pronounced difference with respect to the entry layer in the cusp region is the substantial density jump at the magnetopause. Furthermore, the low‐latitude boundary layer tends to be thinner and less turbulent, and the flow velocity inside the layer is always lower than that of the adjacent magnetosheath. This observation excludes large‐scale reconnection at the front of the magnetosphere as the origin of the layer. It is suggested that diffusive entry of magnetosheath plasma and/or heating of detached plasma from the plasmasphere leads to the formation of the layer. It appears likely that reconnection is dominantly occurring as a transient process in the cusp region and accompanies the eddy convection inside the entry layer. As a consequence, magnetic flux is being eroded from the front of the magnetosphere. This is in agreement with the signature of short‐term large‐amplitude magnetic perturbations observed in the low‐latitude boundary layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.