The in vivo expression of fibronectin, type I collagen, and several non-collagenous proteins was correlated with the development of bone in fetal and early neonatal rat calvariae. Fibronectin was the earliest matrix protein expressed in calvariae, with a peak expression in fetal 16- and 17-day (d) bones. Fibronectin expression coincided with the condensation of preosteoblasts prior to calcification and decreased once bone mineralization commenced. The expression of type I collagen, osteonectin, bone sialoprotein, and alkaline phosphatase mRNAs was found at 17 d. The increase in type I collagen mRNA levels was correlated with a 3.5-fold increase in calcium deposition at 19-20 d. Bone sialoprotein and alkaline phosphatase peaked on fetal 21 d while osteonectin remained at a low level and was localized to the osteoblast layer and the osteocyte lacunae. Osteopontin mRNA levels increased rapidly in neonatal calvariae. After birth, osteonectin and fibronectin were mainly associated with blood vessels. Thus, fibronectin is one of the earliest matrix proteins expressed in calvariae and is rapidly followed by type I collagen, bone sialoprotein, and alkaline phosphatase. Osteocalcin, osteonectin, and osteopontin mRNAs have similar patterns of expression in the developing fetal calvaria, and their synthesis coincided with mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.