Although significant research efforts have focused on the exploration of catalysts for the electrochemical reduction of CO2 , considerably fewer reports have described how support materials for these catalysts affect their performance, which includes their ability to reduce the overpotential, and/or to increase the catalyst utilization and selectivity. Here Ag nanoparticles supported on carbon black (Ag/C) and on titanium dioxide (Ag/TiO2 ) were synthesized. In a flow reactor, 40 wt % Ag/TiO2 exhibited a twofold higher current density for CO production than 40 wt % Ag/C. Faradaic efficiencies of the 40 wt % Ag/TiO2 catalyst exceeded 90 % with a partial current density for CO of 101 mA cm(-2) ; similar to the performance of unsupported Ag nanoparticle catalysts (AgNP) but at a 2.5 times lower Ag loading. A mass activity as high as 2700 mA mgAg (-1) cm(-2) was achieved. In cyclic voltammetry tests in a three-electrode cell, Ag/TiO2 exhibited a lower overpotential for CO2 reduction than AgNP, which, together with other data, suggests that TiO2 stabilizes the intermediate and serves as redox electron carrier to assist CO2 reduction while Ag assists in the formation of the final product, CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.