This study was undertaken to investigate the effect of triiodothyronine (T3) administration to euthyroid rats on beta 3-adrenoceptor (beta 3-AR) expression and on the different components of the adenylyl cyclase (AC) system in brown adipose tissue (BAT). In rats treated with T3, the beta 3-AR density (assessed by the binding of [3H]CGP-12177) showed a decrease of 50%, as did their mRNA, as analyzed by reverse transcriptase-polymerase chain reaction. In hyperthyroid rats, compared with control rats, there was a 40% increase in G alpha s activity (stimulated by NaF or GTP gamma S) and a fourfold increase in the protein concentration (Western blotting). In contrast, the level of the pertussis toxin substrate Gi declined by 35% in response to T3. Analysis of dose-response curves for isoproterenol and CGP-12177 revealed that neither basal nor stimulated AC activities nor 50% stimulatory concentration for these agonists was changed by T3 administration. In conclusion, these results suggest that downregulation of the beta 3-AR by T3 was counter-balanced by changes in other components of the AC cascade (i.e., Gs and Gi), so no change occurred in the capacity of BAT to generate adenosine 3',5'-cyclic monophosphate.
The beta-adrenergic effects of catecholamines are potentiated by thyroid hormones in adipose tissue. Amiodarone (AM) is structurally similar to thyroid hormones and was used to explore the mechanism of the triiodothyronine (T3) effect on beta-adrenergic receptors (beta-ARs) in adipose tissue. AM decreases the expression of some T3 sensitive genes in various tissues and antagonizes the effect of T3 on its nuclear receptors. In this study, the T3, AM and AM + T3 effects on the beta 1- and beta 3-AR density were assessed on rat white adipocytes by radioligand binding using [3H]CGP 12177 after characterization of these subtypes by displacement of [3H]CGP 12177 binding by isoproterenol, BRL 37344 and noradrenaline. BRL 37344 was used to study beta 3-AR lipolysis. White adipocytes from hyperthyroid rats had increased responsiveness (Emax x 2) and sensitivity (+ 38%) to BRL 37344, while those given AM alone had decreased values. Moreover, AM antagonized the T3 effect on lipolysis. The beta 1-binding characteristics (receptor density [Bmax]: 45 +/- 4 fmol/mg of proteins; dissociation factor [Kd]: 0.96 +/- 0.10 nM) were not modified by either compound. Finally, T3 significantly increased beta 3-AR density (587 +/- 69 versus 363 +/- 25 fmol/mg of proteins) and Kd (38 +/- 2 versus 23 +/- 3 nM), while AM alone had no effect and did not antagonize the T3 effect on beta 3-AR number. In conclusion, the hyperthyroid state in the rat potentiated the lipolytic response of white adipocytes to a specific beta 3-agonist and increased the beta 3-AR density without changing in beta 1-AR number and affinity. Furthermore, the lack of antagonism between AM and T3 on beta 3-AR expression suggests that T3 does not work directly on the beta 3-AR gene. Moreover, AM induced a functional tissular hypothyroid-like effect and its antilipolytic effect probably occurred at a postreceptor level.
The influence of 2 different routes of amiodarone (AMIO) administration, oral gavage (OG) and subcutaneous injection (SC), on the density of cardiac beta-adrenoceptors (Bmax), hepatic type I 5' iodothyronine deiodinase (5' DI) and thyroid hormone serum concentrations was studied. Compared with respective control values, AMIO treatment (50 mg/kg per day, 7 days) via both OG and SC routes significantly lowered Bmax (OG: 14.6 +/- 1.92 vs 18.2 +/- 1.03 fmol/mg and SC: 16.6 +/- 2.34 vs 19.1 +/- 2.05 fmol/mg) and 5' DI activity (from 409 to 85 and 340 to 47 fmol I-/mg per min, respectively). The SC route induced a fall in thyroid secretion and a generalized hypothyroidism (decreased serum FT4 and FT3, inhibition of body weight gain. The OG route did not modify thyroid secretion. These results demonstrated that the effects on cardiac beta-receptor density in the SC group might be due to the generalized hypothyroidism and that AMIO produced its specific cardiac effects only after oral route medication, suggesting that the oral route is the best choice for studying AMIO cardiac effects on beta-receptor density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.