IntroductionSeveral studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States.MethodsA survey including 33 specific questions was emailed to 2,500 randomly selected active members of the ASA and to active ESA members.ResultsOverall, 368 questionnaires were completed, 57.1% from ASA and 42.9% from ESA members. Cardiac output is monitored by only 34% of ASA and ESA respondents (P = 0.49) while central venous pressure is monitored by 73% of ASA respondents and 84% of ESA respondents (P < 0.01). Specifically, the pulmonary artery catheter is being used much more frequently in the US than in Europe in the setup of high-risk surgery (85.1% vs. 55.3% respectively, P < 0.001). Clinical experience, blood pressure, central venous pressure, and urine output are the most widely indicators of volume expansion. Finally, 86.5% of ASA respondents and 98.1% of ESA respondents believe that their current hemodynamic management could be improved.ConclusionsIn conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States.
This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.
SummaryTrendelenburg positioning in combination with pneumoperitoneum during robotic-assisted prostatic surgery possibly impairs cerebrovascular autoregulation. If cerebrovascular autoregulation is disturbed, arterial hypertension might induce cerebral hyperaemia and brain oedema, while low arterial blood pressure can induce cerebral ischaemia. The time course of cerebrovascular autoregulation was investigated during use of the Trendelenburg position and a pneumoperitoneum for robotic-assisted prostatic surgery using transcranial Doppler ultrasound. Cerebral blood flow velocity was correlated with arterial blood pressure and the autoregulation index (Mx) was calculated. In 23 male patients, Mx was assessed at baseline, after induction of general anaesthesia, during the Trendelenburg position (40-45°), and after repositioning. During the Trendelenburg position, Mx increased over time, indicating an impairment of cerebrovascular autoregulation. After repositioning, Mx recovered to baseline levels. It can be concluded that with longer durations of Trendelenburg position and pneumoperitoneum, cerebrovascular autoregulation deteriorates, and, therefore, blood pressure management should be adapted to avoid cerebral oedema and the duration of Trendelenburg position should be as short as possible.
Background Interscalene nerve blocks provide adequate analgesia, but there are no objective criteria for early assessment of correct catheter placement. In the present study, pulse oximetry technology was used to evaluate changes in the perfusion index (PI) in both blocked and unblocked arms, and changes in the plethysmographic variability index (PVI) were evaluated once mechanical ventilation was instituted. Methods The PI and PVI values were assessed using a Radical-7 TM finger pulse oximetry device (Masimo Corp., Irvine, CA, USA) in both arms of 30 orthopedic patients who received an interscalene catheter at least 25 min before induction of general anesthesia. Data were evaluated at baseline, on application of local anesthetics; five, ten, and 15 min after onset of interscalene nerve blocks; after induction of general anesthesia; before and after a 500 mL colloid fluid challenge; and five minutes thereafter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.