Cellular glycosphingolipids mediate the fusion between some viruses and the plasma membrane of target cells. In the present study, we have analyzed the interaction of human immunodeficiency virus (HIV)-1 and HIV-2 surface envelope glycoproteins from distinct viral isolates with monolayers of various glycosphingolipids at the air-water interface. The penetration of the viral glycoproteins into glycosphingolipid monolayers was detected as an increase in the surface pressure. We found that HIV-1 recombinant gp120 (IIIB isolate) could penetrate into a monomolecular film of ␣-hydroxylated galactosylceramide (GalCer-HFA), while ceramides, GluCer, and nonhydroxylated GalCer were totally inactive. The glycoproteins isolated from HIV-1 isolates LAI and NDK and from HIV-2(ROD) could also interact with a GalCer-HFA monolayer, whereas gp120 from HIV-1(SEN) and HIV-1(89.6) did not react. These data correlated with the ability of the corresponding viruses to gain entry into the CD4 ؊ /GalCer ؉ cell line HT-29, demonstrating the determinant role of GalCer-HFA in this CD4-independent pathway of HIV-1 and HIV-2 infection. In contrast, all HIV-1 and HIV-2 glycoproteins tested were found to interact with a monolayer of GM3, a ganglioside abundantly expressed in the plasma membrane of CD4 ؉ lymphocytes and macrophages. A V3 loop-derived synthetic peptide inhibitor of HIV-1 and HIV-2 infection in both CD4؊ and CD4 ؉ cells could penetrate into various glycosphingolipid monolayers, including GalCer-HFA and GM3. Taken together, these data suggest that the adsorption of human immunodeficiency viruses to the surface of target cells involves an interaction between the V3 domain of the surface envelope glycoprotein and specific glycosphingolipids, i.e. GalCer-HFA for CD4 ؊ cells and GM3 for CD4 ؉ cells.
The monomolecular film technique was used to compare the specific interaction of four cardiotoxins from Naja mossambica mossambica with different phospholipids. We were able to demonstrate the interaction of cardiotoxins (10(-7) M) with both neutral and negatively charged phospholipids up to very high surface pressures (45 dyn/cm). In the presence of a phospholipid monolayer, the surface activity of cardiotoxins became much greater than that observed at the air-water interface. Neurotoxins of the same venom do not penetrate a phospholipid film, even at low surface pressure (15 dyn/cm). The apparent molecular area of cardiotoxin III during its insertion into a negatively charged phospholipid film was quantitatively defined. As a function of surface pressure of the membrane around 25 dyn/cm, cardiotoxins may exist in two different configurations, "flat" (1400 A2) or "edgewise" (420 A2). This result could account for the lytic activity of this type of toxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.