Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.
Transparent glass-ceramics have been prepared by heat-treating oxyfluoride glasses in the Na 2 O-Al 2 O 3 -SiO 2 -LaF 3 system. The nanocrystallisation of LaF 3 was achieved by controlling time and temperature parameters. Glasses and glass-ceramics were characterised by dilatometry, DTA, XRD and TEM. The mean crystal size (<20 nm) and the crystal fraction increase with the temperature of heat treatment, while they reach a maximum at about 20 h at a temperature close to T g . The crystallisation of phases containing glass modifier elements as well as F anions leads to the increase in the viscosity of the remaining glass matrix. Phase separation occurs in glass-ceramics depending on the glass composition which affects nanocrystallisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.