It is the intravascular and not the initial (in vitro) molecular weight that determines the properties of HES. Especially after repeated administration, a high degree of hydroxyethyl substitution leads to an accumulation of macromolecules that affect hemorrheologic measures and the coagulation system just as adversely as high-molecular-weight starch does. Depending on the degree of substitution, medium-molecular-weight starches can have widely differing properties.
SummaryInitially, hydroxyethyl starch (HES) was only characterized by its in vitro molecular weight (MW). This is not sufficient because HES is degraded in vivo. One relevant parameter that predicts the rate of enzymatic breakdown is the degree of substitution, a measure of the average number of hydroxyethyl groups per glucose unit. The higher this degree of substitution, the slower the break-down. In addition, because the glucose units can be substituted at carbon 2,3 and 6, different substitution patterns are possible. They are classified by their C2/C6 hydroxyethylation ratio. A higher C2/C6 ratio results in less metabolism of the starch in vivo and results in a larger in vivo MW. This in turn affects therapy, because the larger the in vivo MW, the longer is the duration of the volume effect of HES.Of particular importance is the fact that HES with a high in vivo MW affects factor VIII/von Willebrand factor which can lead to an acquired von Willebrand syndrome. During a 10-day volume therapy with a medium-MW HES 200, a form that is difficult to metabolize, we observed an 80% drop in factor VIII/von Willebrand factor. Therapy with a medium-MW HES 200, a form that is easily degraded, and therapy with a low-MW HES 70 did not result in a relevant decline of factor VIII/von Willebrand factor.This explains why hemorrhagic complications have been observed repeatedly in the United States after therapy with HES infusions, some of them lethal. In the United States high-MW HES 480 which is difficult to degrade is most frequently used and results in a larger in vivo MW and subsequent decrease in factor VIII/von Willebrand factor levels. In Europe, medium-MW HES 200 that is easily degraded and low-MW HES 70 are preferred. In the future, HES should be characterized by the in vivo, not the in vitro MW.
Fourteen patients with different types of von Willebrand disease (vWD) having acute bleeds or elective surgery were treated with Immunate(sound recording copyright sign), a double-virus inactivated factor VIII/von Willebrand factor (FVIII/vWF) concentrate. The concentrate was applied as a bolus or via continuous infusion. FVIII activity (FVIIIc), vWF antigen (vWF:Ag), ristocetin cofactor activity (vWF:RCo), collagen binding activity (vWF:CB), activated partial thromboplastin time (aPTT), and von Willebrand multimers (vW-multimers) were monitored for 48 hours. Pharmacokinetic analyses were performed. The clinical efficacy was rated excellent or good. Bleeding complications occurred in 3 patients due to an additional FXIII deficiency in one patient, to a surgically induced bleed in another patient, and a rather short substitution period in the third patient. There were no serious adverse experiences. One patient showed a phlebitic reaction at the site of venous access after more than 100 hours of continuous infusion, requiring a change to application via bolus.
Regardless of the mechanisms that initiate the increase in blood pressure, functional and structural changes in the systemic vasculature are the final result of long-standing hypertension. These changes can occur in the macro- but also in the microvasculature. The supply of the tissues with oxygen, nutrients, and metabolites occurs almost exclusively in the microcirculation (which comprises resistance arterioles, capillaries and venules), and an adequate perfusion via the microcirculatory network is essential for the integrity of tissue and organ function. This review focuses on results from clinical studies in hypertensive patients, which have been performed in close cooperation with different clinical groups over the last three decades. Intravital microscopy was used to study skin microcirculation, microcatheters for the analysis of skeletal muscle microcirculation, the slit lamp for conjunctival microcirculation and the laser scanning ophthalmoscope for the measurement of the retinal capillary network. The first changes of the normal microcirculation can be found in about 93% of patients with essential hypertension, long before organ dysfunctions become clinically manifest. The earliest disorders were found in skin capillaries and thereafter in the retina and the skeletal muscle. In general, the disorders in the different areas were clearly correlated. While capillary rarefaction occurred mainly in the retina and the conjunctiva bulbi, in skin capillaries morphological changes were rare. A significant decrease of capillary erythrocyte velocities under resting conditions together with a marked damping of the postischemic hyperemia was found, both correlating with the duration of hypertension or WHO stage or the fundus hypertonicus stage. Also the mean oxygen tension in the skeletal muscle was correlated with the state of the disease. These data show that the microcirculatory disorders in hypertension are systemic and are hallmarks of the long-term complications of hypertension. There is now a large body of evidence that microvascular changes occur very early and may be important in their pathogenesis and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.