We use high-precision photometry of red-giant-branch (RGB) stars in 57 Galactic globular clusters (GCs), mostly from the "Hubble Space Telescope (HST ) UV Legacy Survey of Galactic globular clusters", to identify and characterize their multiple stellar populations. For each cluster the pseudo two-color diagram (or 'chromosome map') is presented, built with a suitable combination of stellar magnitudes in the F275W, F336W, F438W and F814W filters that maximizes the separation between multiple populations. In the chromosome map of most GCs (Type I clusters), stars separate in two distinct groups that we identify with the first (1G) and the second generation (2G). This identification is further supported by noticing that 1G stars have primordial (oxygen-rich, sodium-poor) chemical composition, whereas 2G stars are enhanced in sodium and depleted in oxygen. This 1G-2G separation is not possible for a few GCs where the two sequences have apparently merged into an extended, continuous sequence. In some GCs (Type II clusters) the 1G and/or the 2G sequences appear to be split, hence displaying more complex chromosome maps. These clusters exhibit multiple SGBs also in purely optical color-magnitude diagrams, with the fainter SGB joining into a red RGB which is populated by stars with enhanced heavy-element abundance. We measure the RGB width by using appropriate colors and pseudo-colors. When the metallicity dependence is removed, the RGB width correlates with the cluster mass. The fraction of 1G stars ranges from ∼8% to ∼67% and anticorrelates with the cluster mass, indicating that incidence and complexity of the multiple population phenomenon both increase with cluster mass.
We present abundances of Fe, Na, and O for 1409 red giant stars in 15 galactic globular clusters (GCs), derived from the homogeneous analysis of high-resolution FLAMES/GIRAFFE spectra. Combining the present data with results from our FLAMES/UVES spectra and from previous studies within the project, we obtained a total sample of 1958 stars in 19 clusters, the largest and most homogeneous database of this kind to date. The programme clusters cover a range in metallicity from [Fe/H] = −2.4 dex to [Fe/H] = −0.4 dex, with a wide variety of global parameters (morphology of the horizontal branch, mass, concentration, etc.). For all clusters we find the Na-O anticorrelation, the classical signature of the operation of proton-capture reactions in H-burning at high temperature in a previous generation of more massive stars that are now extinct. Using quantitative criteria (from the morphology and extension of the Na-O anticorrelation), we can define three different components of the stellar population in GCs. We separate a primordial component (P) of first-generation stars, and two components of second-generation stars, that we name intermediate (I) and extreme (E) populations from their different chemical composition. The P component is present in all clusters, and its fraction is almost constant at about one third. The I component represents the bulk of the cluster population. On the other hand, E component is not present in all clusters, and it is more conspicuous in some (but not in all) of the most massive clusters. We discuss the fractions and spatial distributions of these components in our sample and in two additional clusters (M 3 = NGC 5272 and M 13 = NGC6205) with large sets of stars analysed in the literature. We also find that the slope of the anti-correlation (defined by the minimum O and maximum Na abundances) changes from cluster-to-cluster, a change that is represented well by a bilinear relation on cluster metallicity and luminosity. This second dependence suggests a correlation between average mass of polluters and cluster mass.
Accurate photometry with HST's ACS shows that the main sequence (MS) of the globular cluster NGC 2808 splits into three separate branches. The three MS branches may be associated with the complexities of the cluster's horizontal branch and of its abundance distribution. We attribute the MS branches to successive rounds of star formation, with different helium abundances; we discuss possible sources of helium enrichment. Some other massive globulars also appear to have complex populations; we compare them with NGC 2808. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.