Cardiovascular (CV) toxicity is a potential short- or long-term complication of various anticancer therapies. Some drugs, such as anthracyclines or other biological agents, have been implicated in causing potentially irreversible clinically important cardiac dysfunction. Although targeted therapies are considered less toxic and better tolerated by patients compared with classic chemotherapy agents, rare but serious complications have been described, and longer follow-up is needed to determine the exact profile and outcomes of related cardiac side-effects. Some of these side-effects are irreversible, leading to progressive CV disease, and some others induce reversible dysfunction with no long-term cardiac damage to the patient. Assessment of the prevalence, type and severity of cardiac toxicity caused by various cancer treatments is a breakthrough topic for patient management. Guidelines for preventing, monitoring and treating cardiac side-effects are a major medical need. Efforts are needed to promote strategies for cardiac risk prevention, detection and management, avoiding unintended consequences that can impede development, regulatory approval and patient access to novel therapy. These new ESMO Clinical Practice Guidelines are the result of a multidisciplinary cardio-oncology review of current evidence with the ultimate goal of providing strict criteria-based recommendations on CV risk prevention, assessment, monitoring and management during anticancer treatment.
Extramedullary haemopoiesis (EH) is a compensatory process associated with chronic haemolytic anaemia. It is rare, however, for such an abnormality to cause spinal cord compression. We present two patients with known beta-thalassaemia intermedia who developed spinal cord compression due to masses of extramedullary haematopoietic tissue in the epidural space of the thoracic spine. The EH masses were diagnosed by MRI as an isointense epidural lesion on both T1- and T2-weighted images, compressing severely the spinal cord. After administration of a paramagnetic agent, an intermediate enhancement of the masses was evident. All the vertebral bodies had low to intermediate signal intensity as a result of displacement of fatty marrow by haematopoietic marrow. Expansion of thoracic ribs with bilateral paravertebral masses were characteristic. A small dose of radiotherapy was given and marked improvement in neurological symptoms was evident. An MRI examination established shrinkage of the mass and decompression of spinal cord. The role of MRI in diagnosis of EH masses is essential and radiation therapy is a very effective treatment for this rare complication.
Although further studies are warranted, we consider the use of octreotide a good alternative in palliative treatment of symptomatic liver metastases in patients with end-stage malignant disease.
In a recently published paper (Nioutsikou et al 2005 Phys. Med. Biol. 50 L17) the authors showed that the use of the dose-mass histogram (DMH) concept is a more accurate descriptor of the dose delivered to lung than the traditionally used dose-volume histogram (DVH) concept. Furthermore, they state that if a functional imaging modality could also be registered to the anatomical imaging modality providing a functional weighting across the organ (functional mass) then the more general and realistic concept of the dose-functioning mass histogram (D[F]MH) could be an even more appropriate descriptor. The comments of the present letter to the editor are in line with the basic arguments of that work since their general conclusions appear to be supported by the comparison of the DMH and DVH concepts using radiobiological measures. In this study, it is examined whether the dose-mass histogram (DMH) concept deviated significantly from the widely used dose-volume histogram (DVH) concept regarding the expected lung complications and if there are clinical indications supporting these results. The problem was investigated theoretically by applying two hypothetical dose distributions (Gaussian and semi-Gaussian shaped) on two lungs of uniform and varying densities. The influence of the deviation between DVHs and DMHs on the treatment outcome was estimated by using the relative seriality and LKB models using the Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373) and Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724) parameter sets for radiation pneumonitis, respectively. Furthermore, the biological equivalent of their difference was estimated by the biologically effective uniform dose (D) and equivalent uniform dose (EUD) concepts, respectively. It is shown that the relation between the DVHs and DMHs varies depending on the underlying cell density distribution and the applied dose distribution. However, the range of their deviation in terms of the expected clinical outcome was proven to be very large. Concluding, the effectiveness of the dose distribution delivered to the patients seems to be more closely related to the radiation effects when using the DMH concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.