The increased use of flexible manufacturing systems (FMS) to efficiently provide customers with diversified products has created a significant set of operational challenges. Although extensive research has been conducted on design and operational problems of automated manufacturing systems, many problems remain unsolved. In particular, the scheduling task, the control problem during the operation, is of importance owing to the dynamic nature of the FMS such as flexible parts, tools and automated guided vehicle (AGV) routings. The FMS scheduling problem has been tackled by various traditional optimisation techniques. While these methods can give an optimal solution to small-scale problems, they are often inefficient when applied to larger-scale problems. In this work, different scheduling mechanisms are designed to generate optimum scheduling; these include non-traditional approaches such as genetic algorithm (GA), simulated annealing (SA) algorithm, memetic algorithm (MA) and particle swarm algorithm (PSA) by considering multiple objectives, i.e., minimising the idle time of the machine and minimising the total penalty cost for not meeting the deadline concurrently. The memetic algorithm presented here is essentially a genetic algorithm with an element of simulated annealing. The results of the different optimisation algorithms (memetic algorithm, genetic algorithm, simulated annealing, and particle swarm algorithm) are compared and conclusions are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.