To enhance the insulating properties of a thermal barrier coating, one has to focus on new materials with lower intrinsic thermal conductivity than established yttria-stabilized zirconia. Substances with pyrochlore structure were investigated. Starting from lanthanum zirconate, substitutions of the lanthanum by other trivalent rare-earth elements were made, and the thermal conductivity and the thermal expansion coefficient of the manufactured materials were measured. A complete substitution of the lanthanum led to increased thermal expansion coefficients, whereas the partial substitution did not show an appreciable effect. The thermal conductivities of the modified materials were lower than that of the pure lanthanum zirconate for temperatures <1000°C for all amounts and elements of substitution. A comparison of the observed values with calculated values of the thermal conductivities showed a relatively good agreement.N. Padture-contributing editor Manuscript No. 186991.
In application as a thermal barrier coating (TBC), partially stabilized zirconia (Zr) approaches some limits of performance. To further enhance the efficiency of gas turbines, higher temperature capability and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials and concepts for application as TBC. Materials whose compositions have the pyrochlore structure or doped Zr are presented in contrast with new concepts like nanolayers between the top and bond coat, metal-glass composites, and double-layer structures. In the last concept, the new compositions are used in a combination with Zr, as a double, multi, or graded layer coating. In this case, the benefits of Zr will be combined with the promising properties of the new top coating. In the case of metal-glass composites, the paper will be focused on the influences of different plasma spraying processes on the microstructure. The performance of all these different coating systems has been evaluated by burner rig tests. The results will be presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.