Acyclic schemes have numerous applications in databases and in machine learning, such as improved design, more efficient storage, and increased performance for queries and machine learning algorithms. Multivalued dependencies (MVDs) are the building blocks of acyclic schemes. The discovery from data of both MVDs and acyclic schemes is more challenging than other forms of data dependencies, such as Functional Dependencies, because these dependencies do not hold on subsets of data, and because they are very sensitive to noise in the data; for example a single wrong or missing tuple may invalidate the schema. In this paper we present Maimon, a system for discovering approximate acyclic schemes and MVDs from data. We give a principled definition of approximation, by using notions from information theory, then describe the two components of Maimon: mining for approximate MVDs, then reconstructing acyclic schemes from approximate MVDs. We conduct an experimental evaluation of Maimon on 20 real-world datasets, and show that it can scale up to 1M rows, and up to 30 columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.