The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.
This paper is aimed at analysing the influence of the vertical deflection (DOV) in direct georeferencing (DG) of image data from an aerial digital frame camera. Without considering the value of the DOV, a systematic error is involved in the determination of the point position. This investigation has been carried out considering several values of the vertical deviation and, for each of them, the vertical and horizontal error obtained by varying the FOV (Field of View) over the altitude has been analysed
Orthometric heights, useful for many engineering and geoscience applications, can be obtained by GPS (Global Positioning System) surveys only when an accurate geoid undulation model (that supplies the vertical separation between the geoid and WGS84 ellipsoid) is available for the considered topic area. Global geoid height models (i.e., EGM2008), deriving from satellite gravity measurements suitably integrated with other data are free available on web, but their accuracy is often not sufficient for the user’s purposes. More accurate local models can nevertheless be acquired, but often only for a fee. GPS/levelling surveys are suitable for determining a local, accurate geoid model, but may be too expensive. This paper aims to demonstrate that GNSS (Global Navigation Satellite System) Permanent Station documents (monographs), freely available on the web and supplying orthometric and ellipsoidal heights, permit to calculate precise geoidal undulations useful to perform global geoid modelling on a local area. In fact, in this study 25 GNSS Permanent Stations (GNSS PS), located in North-Western Italy are considered: the differences between GNSS PS geoidal heights and the corresponding EGM2008 1′ × 1′ ones are used as a starting dataset for Ordinary Kriging applications. The resulting model is summed to the EGM2008 1′ × 1′, obtaining a better-performed model of the interest area. The accuracy tests demonstrate that the resulting model is better than EGM2008 grids to produce contours from a GPS dataset for large-scale mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.