The facial expression recognition system is playing vital role in many organizations, institutes, shopping malls to know about their stakeholders’ need and mind set. It comes under the broad category of computer vision. Facial expression can easily explain the true intention of a person without any kind of conversation. The main objective of this work is to improve the performance of facial expression recognition in the benchmark datasets like CK+, JAFFE. In order to achieve the needed accuracy metrics, the convolution neural network was constructed to extract the facial expression features automatically and combined with the handcrafted features extracted using Histogram of Gradients (HoG) and Local Binary Pattern (LBP) methods. Linear Support Vector Machine (SVM) is built to predict the emotions using the combined features. The proposed method produces promising results as compared to the recent work in [1].This is mainly needed in the working environment, shopping malls and other public places to effectively understand the likeliness of the stakeholders at that moment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.