The temporal fine structure of discharge patterns of single auditory-nerve fibers in adult cats was analyzed in response to signals consisting of a variable number of equal-intensity, in-phase harmonics of a common low-frequency fundamental. Two analytic methods were employed. The first method considered Fourier spectra of period histograms based on the period of the fundamental, and the second method considered Fourier spectra of interspike interval histograms (ISIH's). Both analyses provide information about fiber tuning properties, but Fourier spectra of ISIH's also allow estimates to be made of the degree of resolution of individual stimulus components. At low intensities (within 20-40 dB of threshold), indices of synchronization to individual components of complex tones were similar to those obtained for pure tones. This was true even when fibers were capable of responding to several signal components simultaneously. Response spectra obtained at low intensities resembled fibers' tuning curves, and fibers with low spontaneous discharge rates tended to provide better resolution of stimulus components than fibers with high spontaneous rates. Strongly nonlinear behavior existed at higher stimulus intensities. In this, information was transmitted about progressively fewer signal components and about frequencies not present in the acoustic stimulus, and the component eliciting the largest response shifted away from the fiber's characteristic frequency and toward the edges of the stimulus spectrum. This high-intensity "edge enhancement" can result from the combined effects of a compressive input-output nonlinearity, suppression, and the fortuitous addition of internally generated combination tones. The data indicate that sufficient information exists for the auditory system to determine the frequencies of narrowly spaced stimulus components from the temporal fine structure of nerve fiber's responses.
The intensity dependence of signal processing in the cat cochlea was studied in responses of single auditory-nerve fibers for harmonic complexes having various amplitude and phase spectra. Analyses were based on information present in temporal discharge cadences, and they consisted of assessing Fourier spectra of period histograms synchronized to the period of the waveform fundamental. At low intensities, response spectra resembled filtered versions of the stimulus spectrum, with the amounts of filtering being determined by fibers' tuning curves. At high intensities, response spectra exhibited nonlinear behavior and could differ dramatically from spectra obtained at low intensities. The high-intensity response typically emphasized one or more aspects of the stimulus spectrum. When the stimulus possessed equal component amplitudes and phases, the features that were emphasized at high intensities were the high- and low-frequency edges of the spectrum, and when the component at fiber CF was changed in phase or amplitude relative to the others, fibers primarily signaled the presence of the phase- or amplitude-shifted component. Many of the intensity-dependent changes in response spectra are accounted for by considering the effects of the compressive input-output nonlinearity operating at or peripheral to the hair-cell level on the temporal waveform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.