Cytoskeletal and contractile proteins degenerate during functional unloading of muscle. The ratio of myosin heavy chain (MHC) expression changes simultaneously. We have supposed that NO can be a signal molecule related to the regulation of protein metabolism upon muscle unloading. To test this hypothesis, Wistar rats underwent functional unloading for 14 days without and with peroral administration of L-arginine (500 mg/kg) as NO precursor. Significant decreases in m. soleus mass, NO, nNOS, dystrophin, Hsp90, p-S6K, and type I MHC mRNA contents were found in the group of animals with unloading without preparation compared to those in control and in the group with unloading and administration of L-arginine; at the same time, increased contents of atrogin-1/MAFbx and MuRF-1 (p < 0.05) were found. No difference in the IGF-1 mRNA content between all three groups was found. Atrophy was significantly less pronounced in the group with unloading and L-arginine administration compared to that without the amino acid, and no destruction of cytoskeletal proteins was observed. We conclude that administration of L-arginine upon functional unloading decreases the extent of m. soleus atrophy, prevents the decrease in it of type I MHC mRNA, and blocks destructive changes in some cytoskeletal proteins. Such effect can be due to the absence of increase in this group of the content of some ubiquitin ligases and decreased intensity of the p70S6 kinase synthesis marker.
It is known that nitric oxide (NO) may affect myosin heavy chain (MyHC) isoform mRNA transcription in skeletal muscles. The content of NO in soleus muscles decreases during rat hindlimb unloading as well as slow MyHC mRNA transcription. We aimed to detect which signaling pathways are involved in NO-dependent prevention of hindlimbsuspension (HS)-induced changes in MyHCs' expression pattern. Male Wistar rats were divided into four groups: cage control group (C), hindlimb suspended for 7 days (7HS), hindlimb suspended for 7 days with L-arginine administration (7HS+A) (500 mg/kg body mass), and hindlimb suspended for 7 days with both L-arginine (500 mg/kg) and NO-synthase inhibitor L-NAME administration (50 mg/kg) (7HS+A+N). L-arginine treatment during 7 days of rat HS prevented HS-induced NO content decrease and slow MyHC mRNA transcription decrease and attenuated fast MyHC IIb mRNA transcription increase; it also prevented NFATc1 nuclear content decrease, calsarcin-2 expression increase, and GSK-3β Ser 9 phosphorylation decrease. Moreover, L-arginine administration prevented the HS-induced myh7b and PGC1α mRNAs content decreases and slow-type genes repressor SOX6 mRNA transcription increase. All these slow fiber-type protective effects of L-arginine were blocked in HS+A+N group, indicating that these effects were NO-dependent. Thus, NO decrease prevention during HS restores calcineurin/NFATc1 and myh7b/SOX6 signaling.
SUMMARY1. Effects on rod phototransduction following manipulation of retinal C02-HCO3-and H+ fluxes were studied in dark-adapted retinas of the frog and the tiger salamander.2. Rod photoresponses to brief flashes of light were recorded from the isolated sensory retina as electroretinogram mass receptor potentials and from isolated rods by the suction-pipette technique. The experimental treatments were: (1) varying [C02]+[HCO3-] in the perfusion fluid; (2) applying acetazolamide (AAA), which inhibits the enzyme carbonic anhydrase (CA); and (3) applying 4,4'-diisothio-
The light-sensitive current of dark-adapted rods isolated from the Ambystoma retina was recorded while either the inner or the outer segment (IS or OS) protruding from the suction pipette was exposed to treatments intended to reveal the physiological roles of pH-regulating transport mechanisms. Applied to the IS, both amiloride (presumed to block Na+/H+ exchange, 2 mM) and 4-4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) (presumed to block bicarbonate transport, 0.1 mM) generally abolished light sensitivity completely but reversibly, consistent with acidification of the IS. Yet, the circulating ("dark") current often persisted, implying that the OS was not acidified. Applied to the OS, amiloride depressed but DIDS increased the dark current and photoresponses. Given the fact that the current increases with rising OS-pHi, this suggests alkalinization, which could be due to DIDS inhibiting bicarbonate extrusion by HCO3-/Cl- exchangers in the OS. Consistent with this idea, replacing external Cl- by other anions increased the current as would be expected if HCO3-/Cl- exchange is reversed. We propose that the IS and OS manage their acid balances independently and with different sets of transport mechanisms. Acidosis in either compartment suppresses the photosensitivity of the rod, but by differing mechanisms.
It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the “switching-off” of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.