A three-dimensional finite element model of the electromagnetic field and temperature field of electromagnetic continuous casting (EMCC) process was developed. The aim was to investigate the effects of induction heat of high frequency electromagnetic field on the early solidification process of molten steel in mould under various conditions of exciting current parameters. The results show that the induction heat has significant effects on the early solidification process, which appear as increasing the billet surface temperature, thinning the initial solidified shell and lowering the starting point of the initial solidification. The increases in exciting current frequency and density make the effects of induction heat on solidification process increase remarkably. Especially, with the exciting current frequency increase, the early solidification process and shell growth become non-uniform in billet circumferential direction. Furthermore, if the exciting current density exceeds a certain value, there occurs a high temperature region in the top of molten steel column, and then the initial solidification rate is greatly decreased. As a conclusion, the effects of induction heat on initial solidification process must be considered when the exciting current frequency and density are adjusted during the electromagnetic continuous casting process.
Based on the lubrication theory of mould flux, a mathematical model of dynamic pressure in mould flux channel was developed, and the distribution of dynamic pressure and its variation during non-sinusoidal oscillation were investigated. The effects of casting speed and nonsinusoidal oscillation parameters, including the degree of non-sinusoidal operation (nonsinusoidal factor), amplitude and frequency of oscillation on the dynamic pressure in the mould flux channel, were studied. The results indicate that the maximum negative pressure is decreased, and the maximum positive pressure is increased with increasing non-sinusoidal factor. The optimum value of non-sinusoidal factor is ,0?2. With increasing amplitude and frequency of oscillation, both the negative and positive pressure are increased; moreover, the increment of positive pressure is obviously greater than that of negative pressure; especially when the oscillation frequency is increased, the increment of negative pressure is very little. When the casting speed is enhanced, the negative pressure is increased, but the positive pressure is decreased. Therefore, if the casting speed is increased, the oscillation amplitude needs to be increased, as well as the oscillation frequency needs to be decreased properly. With these adjustments, the positive pressure in mould flux channel is nearly unchanged. The actions of strand demoulding and cracks welding are kept effective. Moreover, the negative pressure in mould flux channel is increased properly, which causes the flux consumption to increase, so the mould lubrication is improved. Finally, the strand surface quality is improved greatly, and breakout can be avoided. The applicability of the optimised non-sinusoidal oscillation parameters for the two kinds of casting speed has been proven by industrial practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.