The paper presents an overview of the smoothed finite element methods (S-FEM) which are formulated by combining the existing standard FEM with the strain smoothing techniques used in the meshfree methods. The S-FEM family includes five models: CS-FEM, NS-FEM, ES-FEM, FS-FEM and α-FEM (a combination of NS-FEM and FEM). It was originally formulated for problems of linear elastic solid mechanics and found to have five major properties: (1) S-FEM models are always “softer” than the standard FEM, offering possibilities to overcome the so-called overly-stiff phenomenon encountered in the standard the FEM models; (2) S-FEM models give more freedom and convenience in constructing shape functions for special purposes or enrichments (e.g, various degree of singular field near the crack-tip, highly oscillating fields, etc.); (3) S-FEM models allow the use of distorted elements and general n-sided polygonal elements; (4) NS-FEM offers a simpler tool to estimate the bounds of solutions for many types of problems; (5) the αFEM can offer solutions of very high accuracy. With these properties, the S-FEM has rapidly attracted interests of many. Studies have been published on theoretical aspects of S-FEMs or modified S-FEMs or the related numerical methods. In addition, the applications of the S-FEM have been also extended to many different areas such as analyses of plate and shell structures, analyses of structures using new materials (piezo, composite, FGM), limit and shakedown analyses, geometrical nonlinear and material nonlinear analyses, acoustic analyses, analyses of singular problems (crack, fracture), and analyses of fluid-structure interaction problems.
A linearly conforming radial point interpolation method (LC-RPIM) is presented for stress analysis of two-dimensional solids. In the LC-RPIM method, each field node is enclosed by a Voronoi polygon, and the displacement field function is approximated using RPIM shape functions of Kronecker delta function property created by simple interpolation using local nodes and radial basis functions augmented with linear polynomials to guarantee linear consistency. The system equations are then derived using the Galerkin weak form and nodal integration techniques, and the essential boundary conditions are imposed directly as in the finite element method. The LC-RPIM method is verified via various numerical examples and an extensive comparison study is conducted with the conventional RPIM, analytical approach and FEM. It is found that the presented LC-RPIM is more stable, more accurate in stress and more efficient than the conventional RPIM.
To simulate the contact nonlinearity in 2D solid problems, a contact analysis approach is formulated using incremental form of the subdomain parametric variational principle (SPVP). The formulation is based on a linearly conforming radial point interpolation method (LC-RPIM) using nodal integration technique. Contact interface equations are also presented using a modified Coulomb frictional contact model and discretized by contact point-pairs. In the present approach, the global discretized system equations are transformed into a standard linear complementarity problem (LCP) that can be solved readily using the Lemke method. The present approach can simulate various contact behaviors including bonding/debonding, contacting/departing, and sticking/slipping. An intensive numerical study is performed to validate the proposed method via comparison with the ABAQUS ® and to investigate the effects of the various parameters used in computations. These parameters include normal and tangential adhesions, frictional coefficient, nodal density, the dimension of local nodal support domain, nodal irregularity, shape parameters used in the radial basis function and the external load. The numerical results have demonstrated that the present approach is accurate and stable for contact analysis of 2D solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.