Modulational instability is the direct way for the emergence of wave patterns and localized structures in nonlinear systems. We show in this work that it can be explored in the framework of blood flow models. The whole modified Navier-Stokes equations are reduced to a difference-differential amplitude equation. The modulational instability criterion is therefore derived from the latter, and unstable patterns occurrence is discussed on the basis of the nonlinear parameter model of the vessel. It is found that the critical amplitude is an increasing function of α, whereas the region of instability expands. The subsequent modulated pressure waves are obtained through numerical simulations, in agreement with our analytical expectations. Different classes of modulated pressure waves are obtained, and their close relationship with Mayer waves is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.