The manuscript should contain an abstract. The abstract should be self-contained and citation-free and should not exceed 200 words. The abstract should state the purpose, approach, results and conclusions of the work. The author should assume that the reader has some knowledge of the subject but has not read the paper. Thus, the abstract should be intelligible and complete in it-self (no numerical references); it should not cite figures, tables, or sections of the paper. The abstract should be written using third person instead of first person.
As per the latest trend of cloud computing, data providers are motivated to send their complex data management systems from local sites to commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data has to be encrypted before sending, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in cloud, it is crucial for the search service to allow multi-keyword query and provide result similarity ranking to meet the effective data retrieval need. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely differentiate the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multikeyword ranked search over encrypted cloud data (MRSE), and establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. Among various multi-keyword semantics, we choose the efficient principle of "coordinate matching", i.e., as many matches as possible, to capture the similarity between search query and data documents, and further use "inner product similarity" to quantitatively formalize such principle for similar-ity measurement. We first propose a basic MRSE scheme using secure inner product computation, and then significantly improve it to meet different privacy requirements in two levels of threat models. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given, and experiments on the real-world dataset further show proposed schemes indeed introduce low overhead on computation and communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.