Solid Oxide Fuel Cells (SOFC) are regarded as a promising technology for economic power generation due to their high efficiency and large fuel flexibility. Durability is a severe hurdle towards their deployment. The near future targets in respect to Degradation Rate (DR) are about 0.1%.kh-1, which needs improved monitoring and diagnostics. This work aims at introducing new approach based on Differential Analysis of the i-V curves, named DiVA. It operates with the Differential Resistance (DR) Rd and its evolution during long term testing. Since derivatives are more sensitive to small deviations, the Differential Resistance Analysis (DRA) ensures increased sensitivity and information capability in respect to degradation monitoring and diagnostics, which is demonstrated on a small stack during thermal cycling conditions-before and after the first thermal cycle, on button cells tested up to 9000 hours, as well as on button cells operating in fuel cell and in electrolysis mode. The results show that DRA is several times more sensitive in comparison with the classical DR evaluation based on registration of the voltage decrease at constant current.
Yttrium-doped barium cerate (BCY15) was used as an anode ceramic matrix for synthesis of the Ni-based cermet anode with application in proton-conducting solid oxide fuel cells (pSOFC). The hydrazine wet-chemical synthesis was developed as an alternative low-cost energy-efficient route that promotes ‘in situ’ introduction of metallic Ni particles in the BCY15 matrix. The focus of this study is a detailed comparative characterization of the nickel state in the Ni/BCY15 cermets obtained in two types of medium, aqueous and anhydrous ethylene glycol environment, performed by a combination of XRD, N2 physisorption, SEM, EPR, XPS, and electrochemical impedance spectroscopy. Obtained results on the effect of the working medium show that ethylene glycol ensures active Ni cermet preparation with well-dispersed nanoscale metal Ni particles and provides a strong interaction between hydrazine-originating metallic Ni and cerium from the BCY15 matrix. The metallic Ni phase in the pSOFC anode is more stable during reoxidation compared to the Ni cermet prepared by the commercial mechanical mixing procedure. These factors contribute toward improvement of the anode’s electrochemical performance in pSOFC, enhanced stability, and a lower degradation rate during operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.