A network of chaotic units is investigated where the units are coupled by signals with a transmission delay. Any arbitrary finite network is considered where the chaotic trajectories of the uncoupled units are a solution of the dynamic equations of the network. It is shown that chaotic trajectories cannot be synchronized if the transmission delay is larger than the time scales of the individual units. For several models the master stability function is calculated which determines the maximal delay time for which synchronization is possible.
Conditions are given under which one may prove that the stochastic dynamics of on-line learning can be described by the deterministic evolution of a finite set of order parameters in the thermodynamic limit. A global constraint on the average magnitude of the increments in the stochastic process is necessary to ensure self-averaging. In the absence of such a constraint, convergence may only be in probability.On-line learning, introduced in [1, 2], has become an important paradigm in the analysis of neural networks. Not only has it enabled the understanding of specific algorithms for a wide range of supervised learning scenarios and network architectures, e.g. [3,4,5], but one may also derive learning algorithms which are highly optimized for a specific problem, e.g. [6,7].
A method describing NMR-signal formation in inhomogeneous tissue is presented which covers all diffusion regimes. For this purpose, the frequency distribution inside the voxel is described. Generalizing the results of the well-known static dephasing regime, we derive a formalism to describe the frequency distribution that is valid over the whole dynamic range. The expressions obtained are in agreement with the results obtained from Kubos line-shape theory. To examine the diffusion effects, we utilize a strong collision approximation, which replaces the original diffusion process by a simpler stochastic dynamics. We provide a generally valid relation between the frequency distribution and the local Larmor frequency inside the voxel. To demonstrate the formalism we give analytical expressions for the frequency distribution and the free induction decay in the case of cylindrical and spherical magnetic inhomogeneities. For experimental verification, we performed measurements using a single-voxel spectroscopy method. The data obtained for the frequency distribution, as well as the magnetization decay, are in good agreement with the analytic results, although experiments were limited by magnetic field gradients caused by an imperfect shim and low signal-to-noise ratio.
We examine the step dynamics in a 1+1 dimensional model of epitaxial growth based on the BCF-theory. The model takes analytically into account the diffusion of adatoms, an incorporation mechanism and an Ehrlich-Schwoebel barrier at step edges. We find that the formation of mounds with a stable slope is closely related to the presence of an incorporation mechanism. We confirm this finding using a Solid-On-Solid model in 2+1 dimensions. In the case of an infinite step edge barrier we are able to calculate the saturation profile analytically. Without incorporation but with inclusion of desorption and detachment we find a critical flux for instable growth but no slope selection. In particular, we show that the temperature dependence of the selected slope is solely determined by the Ehrlich-Schwoebel barrier which opens a new possibility in order to measure this fundamental barrier in experiments.Pacs: 81.10.AjTheory and models of crystal growth; physics of crystal growth, crystal morphology and orientation
This paper studies a class of representations (called quadratic) of the canonical commutation relations over symplectic spaces of arbitrary dimension, which naturally generalizes coherent and symplectic (i.e. quasifree) representations and which has previously been heuristically employed in the special case of finite degrees of freedom in the physics literature. An explicit characterization of canonical quadratic transformations in terms of a 'standard form' is given, and it is shown that they can be exponentiated to give representations of the Weyl algebra. Necessary and sufficient conditions are presented for the unitary equivalence of these representations with the Fock representation. Possible applications to quantum optics and quantum field theory are briefly indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.