In this paper we focus on robust linear optimization problems with uncertainty regions defined by φ-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on φ-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization problems in inventory control or finance that involve terms containing moments of random variables, expected utility, etc. We show that the robust counterpart of a linear optimization problem with φ-divergence uncertainty is tractable for most of the choices of φ typically considered in the literature. We extend the results to problems that are nonlinear in the optimization variables. Several applications, including an asset pricing example and a numerical multi-item newsvendor example, illustrate the relevance of the proposed approach.
In this paper we focus on robust linear optimization problems with uncertainty regions defined by φ-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on φ-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization problems in inventory control or finance that involve terms containing moments of random variables, expected utility, etc. We show that the robust counterpart of a linear optimization problem with φ-divergence uncertainty is tractable for most of the choices of φ typically considered in the literature. We extend the results to problems that are nonlinear in the optimization variables. Several applications, including an asset pricing example and a numerical multi-item newsvendor example, illustrate the relevance of the proposed approach.
In the area of computer simulation, Latin hypercube designs play an important role. In this paper the classes of maximin and Audze-Eglais Latin hypercube designs are considered. Up to now only several two-dimensional designs and a few higher dimensional designs for these classes have been published. Using periodic designs and the Enhanced Stochastic Evolutionary algorithm of Jin et al. (J. Stat. Plan. Interference 134(1):268-687, 2005), we obtain new results which we compare to existing results. We thus construct a database of approximate maximin and Audze-Eglais Latin hypercube designs for up to ten dimensions and for up to 300 design points. All these designs can be downloaded from the website http://www.spacefillingdesigns.nl.
In many fields, we come across problems where we want to optimize several conflicting objectives simultaneously. To find a good solution for such multi-objective optimization problems, an approximation of the Pareto set is often generated. In this paper, we consider the approximation of Pareto sets for problems with three or more convex objectives and with convex constraints. For these problems, sandwich algorithms can be used to determine an inner and outer approximation between which the Pareto set is 'sandwiched'. Using these two approximations, we can calculate an upper bound on the approximation error. This upper bound can be used to determine which parts of the approximations must be improved and to provide a quality guarantee to the decision maker. In this paper, we extend higher dimensional sandwich algorithms in three different ways. Firstly, we introduce the new concept of adding dummy points to the inner approximation of a Pareto set. By using these dummy points, we can determine accurate inner and outer approximations more efficiently, i.e., using less time-consuming optimizations. Secondly, we introduce a new method for the calculation of an error measure which is easy to interpret. The combination of easy calculation and easy interpretation makes this measure very suitable for sandwich algorithms. Thirdly, we show how transforming certain objective functions can improve the results of sandwich algorithms and extend their applicability to certain non-convex problems. The calculation of the introduced error measure when using transformations will also be discussed. To show the effect of these enhancements, we make a numerical comparison using four test cases, including a four-dimensional case from the field of intensity-modulated radiation therapy (IMRT). The results of the different cases show that we can indeed achieve an accurate approximation using significantly fewer optimizations by using the enhancements.
In the area of computer simulation, Latin hypercube designs play an important role. In this paper the classes of maximin and Audze-Eglais Latin hypercube designs are considered. Up to now only several two-dimensional designs and a few higher dimensional designs for these classes have been published. Using periodic designs and the Enhanced Stochastic Evolutionary algorithm of Jin et al. (J. Stat. Plan. Interference 134(1):268-687, 2005), we obtain new results which we compare to existing results. We thus construct a database of approximate maximin and Audze-Eglais Latin hypercube designs for up to ten dimensions and for up to 300 design points. All these designs can be downloaded from the website http://www.spacefillingdesigns.nl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.