BACKGROUND AND PURPOSE Aneurysm hemodynamics play an important role in aneurysm growth and subsequent rupture. Within the available hemodynamic characteristics, particle residence time (PRT) is relatively unexplored. However, some studies have shown that PRT is related to thrombus formation and inflammation. The goal of this study is to evaluate the association between PRT and aneurysm rupture and morphology. METHODS We determined the PRT for 113 aneurysms (61 unruptured, 53 ruptured) based on computational fluid dynamic models. Virtual particles were injected into the parent vessel and followed during multiple cardiac cycles. PRT was defined as the time needed for 99% of the particles that entered an aneurysm to leave the aneurysm. Subsequently, we evaluated the association between PRT, rupture, and morphology (aneurysm type, presence of blebs, or multiple lobulations). RESULTS PRT showed no significant difference between unruptured (1.1 seconds interquartile range [IQR .39‐2.0 seconds]) and ruptured aneurysms (1.2 seconds [IQR .47‐2.3 seconds]). PRT was influenced by aneurysm morphology. Longer PRTs were seen in bifurcation aneurysms (1.3 seconds [IQR .54‐2.4 seconds], P = .01) and aneurysms with blebs or multiple lobulations (1.92 seconds [IQR .94‐2.8 seconds], P < .001). Four of five partially thrombosed aneurysms had a long residence time (>1.9 seconds). CONCLUSIONS Our study shows an influence of aneurysm morphology on PRT. Nevertheless, it suggests that PRT cannot be used to differentiate unruptured and ruptured aneurysms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.