This paper studies the performance of a lithium bromide water absorption chiller operating with plate heat exchangers (PHE). The overall heat transfer coefficients in the desorber, the condenser and the solution heat recoverer are calculated using the correlations provided in the literature for evaporation, condensation and liquid to liquid heat transfer in PHEs. The variable parameters are the external driving temperatures. In the desorber, the inlet temperature of the hot fluid ranges from 75°C to 105°C. In the condenser and the absorber, the inlet temperature of the cooling water goes from 20°C to 40°C. The coefficient of performance (COP) obtained ranges from 0.5 to 0.8 for cooling duties ranging from 2 kW to 12 kW. The chiller response to different hot fluid temperatures and circulated mass flow rates is also presented. The per formance and the internal parameters of the chiller at part load are, therefore, calculated. A higher efficiency results when the solution pumped from the absorber to the desorber decreases. The heat transfer analysis of the PHEs is also presented. The overall heat transfer coefficient in the desorber, equal to 790 W/m 2 K at the design conditions, is also analysed at part load. The condenser performance can be represented by a similar relationship found in conventional air cooled condensers.
a b s t r a c tThe influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr H 2 O and NH 3 H 2 O solutions is studied. For the NH 3 H 2 O solution, the pressure drop temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr H 2 O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed.
The Solar Heating and Cooling Technology Collaboration Programme was founded in 1977 as one of the first multilateral technology initiatives ("Implementing Agreements") of the International Energy Agency. Its mission is "to enhance collective knowledge and application of solar heating and cooling through international collaboration to reach the goal set in the vision of solar thermal energy meeting 50% of low temperature heating and cooling demand by 2050.The members of the IEA SHC collaborate on projects (referred to as "Tasks") in the field of research, development, demonstration (RD&D), and test methods for solar thermal energy and solar buildings.A total of 61 projects have been initiated, 53 of which have been completed. Research topics include:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.