By nature of their nucleophilicity, all thiol-based drugs are oxidatively metabolized in the physiological environment. The key to understanding the physiological role of a hypertension drug, (2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid, medically known as captopril is through studying its oxidation pathway: its reactive intermediates and oxidation products. The oxidation of captopril by aqueous bromine and acidified bromate has been studied by spectrophotometric and electrospray ionization techniques. The stoichiometry for the reaction of acidic bromate with captopril is 1:1, BrO3(-) + (C4H6N)(COOH)(COCHCH3CH2)-SH → (C4H6N)(COOH)(COCHCH3CH2)-SO3H + Br(-), with reaction occurring only at the thiol center. For the direct reaction of bromine with captopril, the ratio is 3:1; 3Br2 + (C4H6N)(COOH)(COCHCH3CH2)-SH + 3H2O → (C4H6N)(COOH)(COCHCH3CH2)-SO3H + 6HBr. In excess acidic bromate conditions the reaction displays an initial induction period followed by a sharp rise in absorbance at 390 nm due to rapid formation of bromine. The direct reaction of aqueous bromine with captopril was much faster than oxidation of the thiol by acidified bromate, with a bimolecular rate constant of (1.046 (±0.08) × 10(5) M(-1) s(-1). The detection of thiyl radicals confirms the involvement of radicals as intermediates in the oxidation of Captopril by acidified BrO3(-). The involvement of thiyl radicals in oxidation of captopril competes with a nonradical pathway involving 2-electron oxidations of the sulfur center. The oxidation product of captopril under these strong oxidizing conditions is a sulfonic acid as confirmed by electrospray ionization mass spectrometry (ESI-MS), iodometric titrations, and proton nuclear magnetic resonance ((1)H NMR) results. There was no evidence from ESI-MS for the formation of the sulfenic and sulfinic acids in the oxidation pathway as the thiol group is rapidly oxidized to the sulfonic acid. A computer simulation analysis of this mechanism gave a reasonably good fit to the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.