Radiative alpha-particle capture into the first excited, J(pi)=0+ state of 16O at 6.049 MeV excitation energy has rarely been discussed as contributing to the 12C(alpha,gamma)16O reaction cross section due to experimental difficulties in observing this transition. We report here measurements of this radiative capture in 12C(alpha,gamma)16O for center-of-mass energies of E=2.22 MeV to 5.42 MeV at the DRAGON recoil separator. To determine cross sections, the acceptance of the recoil separator has been simulated in GEANT as well as measured directly. The transition strength between resonances has been identified in R-matrix fits as resulting both from E2 contributions as well as E1 radiative capture. Details of the extrapolation of the total cross section to low energies are then discussed [S6.0(300)=25(-15)(+16) keV b] showing that this transition is likely the most important cascade contribution for 12C(alpha,gamma)16O.
The strength of the Ec.m. = 184 keV resonance in the 26gAl(p, gamma)27 reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility. We measure a value of omega gamma = 35 +/- 7 microeV and a resonance energy of Ec.m. = 184 +/- 1 keV, consistent with p-wave proton capture into the 7652(3) keV state in 27Si, and discuss the implications of these values for 26GAl nucleosynthesis in typical oxygen-neon white-dwarf novae.
During the slow neutron capture process in massive stars, reactions on light elements can both produce and absorb neutrons thereby influencing the final heavy element abundances. At low metallicities, the high neutron capture rate of 16 O can inhibit s-process nucleosynthesis unless the neutrons are recycled via the 17 O(α,n) 20 Ne reaction. The efficiency of this neutron recycling is determined by competition between the 17 O(α,n) 20 Ne and 17 O(α, γ) 21 Ne reactions. While some experimental data are available on the former reaction, no data exist for the radiative capture channel at the relevant astrophysical energies.The 17 O(α, γ) 21 Ne reaction has been studied directly using the DRAGON recoil separator at the TRIUMF Laboratory. The reaction cross section has been determined at energies between 0.6 and 1.6 MeV E cm , reaching into the Gamow window for core helium burning for the first time. Resonance strengths for resonances at 0.63, 0.721, 0.81 and 1.122 MeV E cm have been extracted. The experimentally based reaction rate calculated represents a lower limit, but suggests that significant s-process nucleosynthesis occurs in low metallicity massive stars.PACS numbers 26.20. Kn, 25.40.Lw
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.