The proboscis extension conditioning (PER) is a successful behavioural paradigm for studying sensory and learning mechanisms in bees. Whilst mainly used with olfactory and tactile stimuli, more recently reliable PER conditioning has been achieved with visual stimuli such as colours and looming stripes. However, the results reported in different studies vary quite strongly, and it remains controversially discussed how to best condition visual PER. It is particularly striking that visual PER leads to more limited performance as compared to visual conditioning of free-flying bees. It could be that visual PER learning is affected by the lack of movement and that the presence of visual motion cues could compensate for it. We tested whether bees would show differences in learning performances when conditioned either with a colour and motion stimulus in combination or with colour alone. Colour acquisition was improved in the presence of the motion stimulus. The result is consistent with the idea that visual learning might be tightly linked to movement in bees, given that they use vision predominantly during flight. Our results further confirm recent findings that successful visual PER conditioning in bees is achievable without obligatorily removing the antennae.
The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees’ responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees’ preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.Electronic supplementary materialThe online version of this article (10.1007/s00114-017-1531-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.